Localized oxidative killing of tumor cells by glassy iron nanoparticles

January 20, 2016
Localized oxidative killing of tumor cells by glassy iron nanoparticles

Amorphous iron nanoparticles have a specific toxicity in tumor cells. In the journal Angewandte Chemie, Chinese scientists describe their design and synthesis of a special amorphous state of nanoparticulate iron, which can locally release reactive iron species in the acidic and hydrogen peroxide rich environment of cancer cells, providing new possibilities for theranostics and chemodynamic therapies.

Cancer cells are characterized by their relatively acidic cell environment and their production of significant amounts of compared to healthy cells. Some chemodynamic approaches for cancer treatment thus employ the Fenton reaction, that is, iron ions reacting with the hydrogen peroxide to produce (ROS), which in turn can damage and destroy the . However, the transport of to the target cells is problematic, and crystalline iron nanoparticles are not as effective. Therefore, Jianlin Shi and Wenbo Bu and their groups at Shanghai Institute of Ceramics, in collaboration with Fudan University of Shanghai, China, have now prepared iron nanoparticles in an amorphous, glassy state. "Interestingly, the amorphous iron(0) nanoparticles present several unique physicochemical properties," the scientists write, and: "The results confirm that the amorphous iron nanoparticles, hydrogen peroxide, and acidic conditions act synergistically to kill cells."

In addition to their potential as drugs, other advantages are a good contrast for magnetic resonance imaging and the possibility of magnetic targeting. "Ideally, a perfect carrier should release its cargo at once when it is transferred from neutral to mildly acidic conditions, such as those in the tumor microenvironment," the authors write. Using , they proved by in vitro and in vivo tests that the anticipated mechanism was working.

Magnetic targeting, on the other hand, enables drug delivery to the target tissue through magnetization. The scientists observed that "efficient magnetic targeting and retention had been achieved in vivo, providing a good basis for chemodynamic therapy." However, they also say that future prospects will include surface modification of the particles to further improve the tumor-targeting performance. In a nutshell, Shi and Bu's elegant "hubble bubble" approach, as they call it, has produced a tiny, highly effective Trojan horse for chemodynamic cancer therapy, as shown in mice. The preparation method features mild conditions and has prospects for other metals as well.

Explore further: In Brief: Bifunctional plasmonic / magnetic nanoparticles

More information: Chen Zhang et al. Synthesis of Iron Nanometallic Glasses and Their Application in Cancer Therapy by a Localized Fenton Reaction, Angewandte Chemie International Edition (2016). DOI: 10.1002/anie.201510031

Related Stories

In Brief: Bifunctional plasmonic / magnetic nanoparticles

August 19, 2011

An amorphous-seed mediated strategy has been developed in the Center for Nanoscale Materials Nanophotonics Group at the Argonne National Laboratory for creating bifunctional nanoparticles composed of silver and iron oxide ...

New nanoparticle delivers, tracks cancer drugs

October 29, 2013

(Phys.org) —UNSW chemical engineers have synthesised a new iron oxide nanoparticle that delivers cancer drugs to cells while simultaneously monitoring the drug release in real time.

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.