What do lentils have to do with geology?

January 26, 2016
Figure 1 from Tarling and Rowe.

When clayey materials are compressed and sheared, they commonly develop a "scaly fabric" wherein the clay is divided by braided shear surfaces into lentil-shaped chips. Although such scaly fabrics are found at the bed of glaciers, the base of landslides, and in gougey faults, little is known about how they form or how they deform. In their article for Geology, Matthew Tarling and Christina Rowe use dry lentils to help explore this process.

Tarling and Rowe built a shear box with a sliding floor and filled it with lentils. In a series of experiments, they show that the lentils have a tendency to shift constantly against one another when the bulk is shearing, prohibiting the development of long-lasting faults.

Each lentil follows a slightly different path, at different speeds, to accomplish the broad deformation of the whole. This "delocalization" behavior seems to be intrinsic to the system. This observation suggests an explanation for why scaly layers of clay may grow so broad in faults, landslides, and the beds of glaciers, and why these types of shear networks do not grow into localized .

Explore further: Earth is 'lazy' when forming faults like those near San Andreas

More information: Experimental slip distribution in lentils as an analog for scaly clay fabrics, Matthew S. Tarling, http://dx.doi.org/10.1130/G37306.1.

Related Stories

ESA's weightless plants fly on a Dragon

April 23, 2014

(Phys.org) —It is a race against time for ESA's Gravi-2 experiment following launch last Friday on the Dragon space ferry. Stowed in Dragon's cargo are lentil seeds that will be nurtured into life on the International Space ...

Megathrust quake faults weaker and less stressed than thought

September 10, 2015

Some of the inner workings of Earth's subduction zones and their "megathrust" faults are revealed in a paper published today in the journal Science. U.S. Geological Survey scientist Jeanne Hardebeck calculated the frictional ...

Study links earthquake faults to slow-moving depths

November 8, 2013

(Phys.org) —Most earthquakes erupt suddenly from faults near Earth's surface, and the big ones can topple cities. But miles below, rocks heated to the consistency of wax moving over thousands to millions of years may be ...

Recommended for you

Scientists examine bacterium found 1,000 feet underground

December 8, 2016

Pioneering work being carried out in a cave in New Mexico by researchers at McMaster University and The University of Akron, Ohio, is changing the understanding of how antibiotic resistance may have emerged and how doctors ...

New studies take a second look at coral bleaching culprit

December 7, 2016

Scientists have called superoxide out as the main culprit behind coral bleaching: The idea is that as this toxin build up inside coral cells, the corals fight back by ejecting the tiny energy- and color-producing algae living ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.