Intercity quantum key distribution method outperforms quantum repeaters

January 8, 2016 by Lisa Zyga feature
intercity qkd
By increasing the distance at which data can be securely communicated using quantum key distribution from 400 km to 800 km, the all-photonic protocol could connect most of the major cities in Japan. Credit: NTT

(Phys.org)—Quantum key distribution (QKD) may one day allow for nearly perfectly secure data communication on a large scale, but before this can happen, QKD networks must extend across distances that are large enough to connect cities and even span continents. Currently, QKD links are limited to about 400 km due to optical fiber losses, and these links can be extended using quantum repeaters, which are, however, challenging to implement at the moment.

In a new paper published in Nature Communications, Dr. Koji Azuma et al., from Nippon Telegraph and Telephone Corporation (NTT) Basic Research Laboratories in Atsugi, Kanagawa, Japan, have proposed an alternative method of expanding QKD networks that is entirely based on light and doesn't require quantum repeaters.

"Currently, the only known way to securely extend the achievable distance of the QKD links is to use quantum repeaters," Azuma told Phys.org. "While quantum repeaters are certainly necessary for intercontinental backbone links, they are likely to be an overkill in terms of their enormous resources for the intercity communication ranges. Our new QKD protocol presents an alternative for users by connecting places within an 800 km radius in a cost-effective and high-speed manner."

The new protocol relies solely on manipulating and measuring the quantum properties of light. As the researchers explain, the advantages of the new protocol arise from the fact that it is entirely optical and doesn't require the complexities that quantum repeaters do, such as matter-based quantum memories, large numbers of qubits, and techniques.

"In contrast to quantum repeaters, our protocol uses just a single intermediate node equipped only with optical devices," Azuma said. "Nonetheless, it could outperform even quantum repeaters for the communication range. This is remarkable in the sense that our protocol occupies an essential position to bridge gaps between the current QKD links and future quantum repeaters in terms of the required technological levels as well as the effective communication distances."

intercity qkd
A comparison of three secure quantum communication protocols: direct transmission, all-photonic intercity QKD, and quantum repeaters. Credit: NTT

The researchers have theoretically shown that the current version of the new protocol can extend a QKD link from 400 km to about 800 km, and this distance could likely be increased with future modifications. Beyond this distance, quantum repeaters would still be needed. But overall, the researchers expect the new protocol to cut the number of repeater nodes in half, while keeping the communication efficiency the same.

Because some quantum repeaters will still be needed for long-distance QKD links such as intercontinental links, the researchers have also been working on improving quantum repeaters. In an earlier paper in collaboration with Prof. Hoi-Kwong Lo at the University of Toronto, they designed all-optical quantum repeaters that don't require matter-based quantum memories. The researchers predict that, when combined with the new all-optical protocol, the all-optical quantum repeaters could pave the way toward the all-optical realization of a global QKD network.

"The advantages of an all-optical worldwide QKD network are many," Azuma said. "For instance, the all-optical network serves the 'highest' communication rate that is determined only by the repetition rate of the optical devices, irrespectively of the communication distance. This is in striking contrast to usual schemes necessitating a memory function of matter, whose communication rate is, at least, bounded by the (inverse of) memory time. In addition, the absence of matter systems makes a challenging interface between matter and light completely unnecessary. Moreover, our could work at room temperature in principle, thanks to its all-photonic nature. Therefore, the all-optical approach is a promising solution for realizing a high-speed and cost-effective worldwide QKD network."

In the near future, the researchers plan to perform proof-of-principle experiments for these new all-photonic schemes.

"This is an interesting challenge, not only for the community of quantum information science, but also for the conventional communications (like our company NTT) where the all-optical approach has already played an important role," Azuma said.

Explore further: Making quantum encryption practical

More information: Koji Azuma et al. "All-photonic intercity quantum key distribution." Nature Communications. DOI: 10.1038/ncomms10171

Related Stories

Making quantum encryption practical

May 21, 2013

One of the many promising applications of quantum mechanics in the information sciences is quantum key distribution (QKD), in which the counterintuitive behavior of quantum particles guarantees that no one can eavesdrop on ...

Physicists break distance record for quantum teleportation

September 22, 2015

Researchers at the National Institute of Standards and Technology (NIST) have "teleported" or transferred quantum information carried in light particles over 100 kilometers (km) of optical fiber, four times farther than the ...

Scientists produce status check on quantum teleportation

September 30, 2015

Mention the word 'teleportation' and for many people it conjures up "Beam me up, Scottie" images of Captain James T Kirk. But in the last two decades quantum teleportation – transferring the quantum structure of an object ...

Recommended for you

'Quantum' bounds not so quantum after all

July 1, 2016

(Phys.org)—Quantum bounds are numbers (such as 4, 6, and 2√2) that naturally appear in quantum experiments, similar to how the number π emerges in circles. But just as how π pops up in a wide variety of areas beyond ...

Imaging at the speed of light

July 1, 2016

Researchers have improved upon a new camera technology that can image at speeds about 100 times faster than today's commercial cameras while also capturing more image frames. The new technology opens a host of new possibilities ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Spaced out Engineer
not rated yet Jan 08, 2016
Repeaters might be externally accessible. It's depends on their design. At least only intercontinental with still have security issues besides on board drivers based on hardware. Operating systems schemes will soon reward both hacker the few that get compromised as it can lead to a mathematical discovery.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.