Study offers new insights into Group A Streptococcus

January 28, 2016

One bacterial pathogen is responsible for a range of diseases, from pharyngitis and impetigo to more severe diagnoses such as toxic shock syndrome and necrotizing fasciitis (flesh eating disease), a serious bacterial skin infection that spreads quickly and kills the body's soft tissue. The pathogen, known as Group A Streptococcus, remains a global health burden with an estimated 700 million cases reported annually, and more than half a million deaths due to severe infections.

The ability of Group A Streptococcus (GAS) to induce rapid destruction of has been observed for more than a century and remains a clinical hallmark of GAS diagnosis. This destruction is due to the production of a small peptide toxin by GAS known as Streptolysin S (SLS).

Although it has been widely held that SLS exerts its lytic activity—the excessive destruction of red blood cells—through membrane disruption, its exact mode of action has remained unknown.

"Recent molecular studies by our lab and others have demonstrated that SLS is a peptide toxin linked to a broad class of bacterially produced compounds known as bacteriocins," Shaun Lee, an associate professor of biological sciences at the University of Notre Dame, said. "Many of these related bacteriocins have defined cellular targets and have not been shown to function as general lytic agents of cellular membranes."

In a new study, Lee's research group provides the first real-time, high-resolution observation of Group A streptoccocal red cell destruction, also called beta-hemolysis.

"We demonstrate that the long-observed red blood cell hemolysis by SLS is not caused by general destruction of the red blood cell membrane, as has been previously thought, but rather that the action is due to the ability of the SLS toxin to directly target a specific outer membrane protein on the surface of the red blood cell, the major erythrocyte anion exchange protein Band 3."

Importantly, chemical inhibition of Band 3 function completely blocked the hemolytic activity of SLS, and significantly altered the pathology induced by GAS in an in vivo skin infection model.

"Our studies provide the first mechanistic look into the longstanding question of SLS function and, importantly, open new therapeutic avenues for the treatment of severe GAS disease," Lee said.

"This was a wonderful collaborative effort led by Dustin Higashi, a senior researcher in my lab, to try to answer the longstanding mystery of how this very powerful toxin known as Streptolysin S lyses red blood cells to contribute to invasive human disease caused by the Group A Streptococcus," he said.

"Findings critical to the support of our hypothesis were provided by in vivo studies performed at the W.M. Keck Center for Transgene Research, under the direction of Francis Castellino and Victoria Ploplis. Using humanized mouse models, Keck scientists Deborah Donahue and Jeff Mayfield demonstrated that by blocking the action of SLS toxin during a GAS infection, the pathology at the site of the infection could be drastically reduced. These findings have tremendous potential for developing novel therapeutics to treat severe diseases caused by Group A Streptococcus."

Explore further: Scientists reveal steps leading to necrotizing fasciitis

More information: Dustin L. Higashi et al. Activation of band 3 mediates group A Streptococcus streptolysin S-based beta-haemolysis, Nature Microbiology (2016). DOI: 10.1038/nmicrobiol.2015.4

Related Stories

Scientists reveal steps leading to necrotizing fasciitis

January 16, 2014

How does Streptococcus pyogenes, or Group A streptococcus (GAS)—a bacterial pathogen that can colonize humans without causing symptoms or can lead to mild infections—also cause life-threatening diseases such as necrotizing ...

Could an HIV drug beat strep throat, flesh-eating bacteria?

February 25, 2015

With antibiotic resistance on the rise, scientists are looking for innovative ways to combat bacterial infections. The pathogen that causes conditions from strep throat to flesh-eating disease is among them, but scientists ...

Staphylococcus aureus Achilles' heel

October 21, 2015

Staphylococcus aureus is both a transient skin colonizer and a formidable human pathogen, ranking amongst the leading causes of skin and soft tissue infections, as well as severe pneumonia. Scientists attempt to work out ...

Recommended for you

A new path for killing pathogenic bacteria

August 24, 2016

Bacteria that cause tuberculosis, leprosy and other diseases, survive by switching between two different types of metabolism. EPFL scientists have now discovered that this switch is controlled by a mechanism that constantly ...

Researchers image roots in the ground

August 23, 2016

It's a familiar hazard of vacation time: While you're conspicuously absent, your colleagues in the office forget to water and fertilize the plants - often leaving behind nothing but a brownish skeleton. Whether a plant thrives ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.