Graphene, the finest filter

January 5, 2016

Graphene can simplify production of heavy water and help clean nuclear waste by filtering different isotopes of hydrogen, University of Manchester research indicates.

Writing in Science, a team led by Sir Andre Geim demonstrated that using membranes made from graphene can act as a sieve, separating protons – nuclei of hydrogen – from heavier nuclei of hydrogen isotope deuterium.

The process could mean producing for could be ten times less energy intensive, simpler and cheaper using graphene.

One of the hydrogen isotopes, deuterium, is widely used in analytical and chemical tracing technologies and, also, as heavy water required in thousands of tons for operation of stations.

The heaviest isotope, tritium, is radioactive and needs to be safely removed as a byproduct of electricity generation at nuclear fission plants. Future nuclear technology is based on fusion of the two heavy isotopes.

The current separation technologies for production of heavy water are extremely energy intensive, and have presented a major scientific and industrial problem. Now graphene promises do so efficiently.

Researchers tested whether deuterons – nuclei of deuterium – can pass through graphene and its sister material . They fully expected deuterons to easily pass through, as existing theory did not predict any difference in permeation for both isotopes.

The video will load shortly

The researchers were surprised to find that deuterons were not only effectively sieved out by their one atom thick membranes, but were sieved with a high separation efficiency.

The discovery makes monolayers of graphene and boron nitride attractive as separation membranes to enrich mixtures of deuterium and tritium.

Furthermore, the researchers showed that the separation is fully scalable. Using chemical-vapor-deposited (CVD) graphene, they built centimetre-sized devices to effectively pump out hydrogen from a mixture of deuterium and hydrogen.

Dr Marcelo Lozada-Hidalgo, University of Manchester postdoctoral researcher and first author of the paper, said: "This is really the first membrane shown to distinguish between subatomic particles, all at room temperature.

"Now that we showed that it is a fully scalable technology, we hope it will quickly find its way to real applications."

Professor Irina Grigorieva, who co-authored the research, said: "We were stunned to see that a membrane can be used to separate .

"It is a really simple set up. We hope to see applications of these filters not only in analytical and chemical tracing technologies but also in helping to clean nuclear waste from radioactive tritium."

Explore further: Protons fuel graphene prospects

Related Stories

Protons fuel graphene prospects

November 26, 2014

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, University of Manchester researchers have found.

Small-scale nuclear fusion may be a new energy source

September 25, 2015

Fusion energy may soon be used in small-scale power stations. This means producing environmentally friendly heating and electricity at a low cost from fuel found in water. Both heating generators and generators for electricity ...

A new clean nuclear fusion reactor has been designed

January 14, 2013

A researcher at the Universidad politécnica de Madrid (UPM, Spain) has patented a nuclear fusion reactor by inertial confinement that, apart from be used to generate electric power in plants, can be applied to propel ships.

Graphene's love affair with water

February 13, 2014

Graphene has proven itself as a wonder material with a vast range of unique properties. Among the least-known marvels of graphene is its strange love affair with water.

Laying down a discerning membrane

October 4, 2013

One of the thinnest membranes ever made is also highly discriminating when it comes to the molecules going through it. Engineers at the University of South Carolina have constructed a graphene oxide membrane less than 2 nanometers ...

Recommended for you

New aspect of atom mimicry for nanotechnology applications

December 2, 2016

In nanotechnology control is key. Control over the arrangements and distances between nanoparticles can allow tailored interaction strengths so that properties can be harnessed in devices such as plasmonic sensors. Now researchers ...

Engineers create prototype chip just three atoms thick

November 29, 2016

For more than 50 years, silicon chipmakers have devised inventive ways to switch electricity on and off, generating the digital ones and zeroes that encode words, pictures, movies and other forms of data.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
5 / 5 (1) Jan 05, 2016
Researchers tested whether deuterons – nuclei of deuterium – can pass through graphene and its sister material boron nitride. They fully expected deuterons to easily pass through, as existing theory did not predict any difference in permeation for both isotopes.
The researchers were surprised to find that deuterons were not only effectively sieved out by their one atom thick membranes, but were sieved with a high separation efficiency.

Now that is surprising (and a great find). I wonder if there are other monolayers with different cell sizes that can effectively filter isotopes like C12 from C14 or spearate out radioactive waste from contaminated solutions.
rrrander
not rated yet Jan 15, 2016
Hey, maybe it would provide a cheaper, easier way to separate U-235 from U-238!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.