Germs, humans and numbers: New estimate revises our microbiome numbers downwards

January 28, 2016

How many microbes inhabit our body on a regular basis? For the last few decades, the most commonly accepted estimate in the scientific world puts that number at around ten times as many bacterial as human cells. In research published today in the journal Cell, a recalculation of that number by Weizmann Institute of Science researchers reveals that the average adult has just under 40 trillion bacterial cells and about 30 trillion human ones, making the ratio much closer to 1:1.

The bacteria living in our bodies are important for our health. The makeup of each person's microbiome plays a role in both the tendency to become obese and in each individual's reaction to drugs. Some scientists have begun referring to it as the "second genome," recognizing that it needs to be taken into account when treating patients.

The rising importance of the microbiome in current scientific research led the Weizmann Institute's Prof. Ron Milo, Dr. Shai Fuchs and research student Ron Sender to revisit the common wisdom concerning the ratio of "personal" bacteria to human cells.

Their research was undertaken as part of their work for the book Cell Biology by the Numbers, which was recently published by Milo and Prof. Rob Philips of the California Institute of Technology. The book, as the name suggests, is a compilation of insights gained from calculations and estimates about living cells.

The original estimate that outnumber human cells in the body by ten to one was based on, among other things, the assumption that the average bacterium is about 1,000 times smaller than the average human cell. The problem with this estimate is that human cells vary widely in size, as do bacteria. For example, are at least 100 times smaller than fat or , and the microbes in the large intestine are about four times the size of the often-used "standard" bacterial cell volume. The Weizmann Institute scientists weighted their computations by the numbers of the different-sized , as well as those of the various microbiome cells. They also weighted their calculations for the quantities of "guest" bacteria in different organs in the body. For example, the bacteria in the large intestine dominate, in terms of overall numbers, all the other organs combined.

Milo says, "It is truly important to understand our microbiome, and research into this fascinating field is crucial for biomedical research. In the life sciences, which involve "messy" highly dynamic and variable systems, researchers sometimes tend to rely on qualitative rather than quantitative statements. But performing educated estimates in cell biology can serve as an extremely powerful tool. For those researchers who are proficient at hearing what the numbers tell them, estimates serve as a 'sixth sense' for understanding the lives of cells."

Explore further: Why count stools in the human microbiome?

Related Stories

Why count stools in the human microbiome?

January 18, 2016

Last week, a not-yet-accepted-for-publication paper challenged the long-held view that bacterial cells outnumber human cells in a body 10 to 1. As "rewriting the textbooks" fueled media attention, I took a look, because I ...

How does your microbiome grow?

September 2, 2015

It is increasingly clear that the thousands of different bacteria living in our intestinal tract - our microbiome - have a major impact on our health. But the details of the microbiome's effects are still fairly murky. A ...

A cultural revolution in the study of the gut microbiome

December 14, 2015

It's estimated that as many as 1,000,000 Americans suffer from inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, which cause mild to severe symptoms that at best can be managed and at worst ...

Recommended for you

Ten months in the air without landing

October 27, 2016

Common swifts are known for their impressive aerial abilities, capturing food and nest material while in flight. Now, by attaching data loggers to the birds, researchers reporting in the Cell Press journal Current Biology ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.