Why are flexible computer screens taking so long to develop?

January 18, 2016 by Stuart Higgins, University Of Cambridge, The Conversation
Credit: LG

It's common to first see exciting new technologies in science fiction, but less so in stories about wizards and dragons. Yet one of the most interesting bits of kit on display at this year's Consumer Electronics Show (CES) in Las Vegas was reminiscent of the magical Daily Prophet newspaper in the Harry Potter series.

Thin, flexible screens such as the one showcased by LG could allow the creation of newspapers that change daily, display video like a tablet computer, but that can still be rolled up and put in your pocket. These plastic electronic displays could also provide smartphones with shatterproof displays (good news for anyone who's inadvertently tried drop-testing their phone onto the pavement) and lead to the next generation of flexible wearable technology.

But LG's announcement is not the first time that flexible displays has been demonstrated at CES. We've seen similar technologies every year for some time now, and LG itself unveiled another prototype in a press release 18 months ago. Yet only a handful of products have come to market that feature flexible displays, and those have the displays mounted in a rigid holder, rather than free for the user to bend. So why is this technology taking so long to reach our homes?

How displays work

Take a look at your computer screen through a magnifying glass and you'll see the individual pixels, each made up of three subpixels – red, green, and blue light sources. Each of these subpixels is connected via a grid of wires that criss-cross the back of the display to another circuit called a display driver. This translates incoming video data into signals that turn each subpixel on and off.

Magnified LCD screen. Credit: Akpch/Wikimedia Commons

How each pixel generates light varies depending on the technology used. Two of the most common seen today are (LCDs) and organic light emitting diodes (OLEDs). LCDs use a white light at the back of the display that passes through red, green and blue colour filters. Each subpixel uses a combination of liquid crystals and polarising filters that act like tiny shutters, either letting light through or blocking it.

OLEDs, on the other hand, are mini light sources that directly generate light when turned on. This removes the need for the behind the display, reducing its overall thickness, and is one of the driving factors behind the growing uptake of OLED technology.

The video will load shortly

The challenges

Whatever technology is used, there are many individual components crammed into a relatively small space. Many smartphone displays contain more than three million subpixels, for example. Bending these components introduces strain, which can tear electrical connections and peel apart layers. Current displays use a rigid piece of glass, to keep the display safe from the mechanical strains of the outside world. Something that, by design, is not an option in flexible displays.

Organic semiconductors – the chemicals that directly produce light in OLED displays – have the additional problem of being highly sensitive to both water vapour and oxygen, gases that can pass relatively easily through thin plastic films. This can result in faded and dead pixels, leaving a less than desirable-looking result.

Circuits patterned on a plastic substrate. Credit: Stuart Higgins

There's also the challenge of the large-scale manufacturing of these circuits. Plastics can be tricky materials to work with. They often swell and shrink in response to water and heat, and it can be difficult to persuade materials to bond to it. In a manufacturing environment, where precise alignment and high temperature processing are critical, this can cause major issues.

Finally, it's not just flexible displays that need to be developed. The components needed to power and operate the display also need to be incorporated into any overall design, placing constraints on the kinds of shape and size currently achievable.

What next?

Scientists in Japan have demonstrated how to make electrical circuits on plastic thinner than the width of human hair in an attempt to reduce the impact of bending on circuit performance. And research into flexible batteries has started to become more prevalent, too.

Developing solutions to these problems is part of a broader area of active research, as the science and technology underlying flexible displays is also applicable to many other fields, such as biomedical devices and solar energy. While the challenges remain, the technology edges closer to the point where devices such as will become ubiquitous in our everyday lives.

Explore further: LG Display: Expect display rollable like newspaper at CES

Related Stories

LG Display: Expect display rollable like newspaper at CES

January 4, 2016

Anyone following tech stories from month to month will recognize LG Display as those tech people focused on "bendy" and "rollable" displays, bolstered by the company's aggressive attention toward novel organic light-emitting ...

LG Display plans heavy investment in OLED plant

July 23, 2015

Apple's iPhone displays are linked to the South Korean company LG Display in a news report. The Telegraph said that LG Display has invested heavily in a flexible-screen production line.

Aluminum nanoparticles could improve electronic displays

January 6, 2016

Whether showing off family photos on smartphones or watching TV shows on laptops, many people look at liquid crystal displays (LCDs) every day. LCDs are continually being improved, but almost all currently use color technology ...

LG to put OLED first as Chinese LCD makers narrow gap

August 17, 2015

South Korea's LG Display said Monday that it will change its investment priority to advanced displays called OLEDs as Chinese manufacturers quickly catch up with their South Korean rivals in the LCD market.

Recommended for you

Samsung to disable Note 7 phones in recall effort

December 9, 2016

Samsung announced Friday it would disable its Galaxy Note 7 smartphones in the US market to force remaining owners to stop using the devices, which were recalled for safety reasons.

Swiss unveil stratospheric solar plane

December 7, 2016

Just months after two Swiss pilots completed a historic round-the-world trip in a Sun-powered plane, another Swiss adventurer on Wednesday unveiled a solar plane aimed at reaching the stratosphere.

Solar panels repay their energy 'debt': study

December 6, 2016

The climate-friendly electricity generated by solar panels in the past 40 years has all but cancelled out the polluting energy used to produce them, a study said Tuesday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.