New way to make a CuPd catalyst for the electrochemical reduction of carbon dioxide to methane

January 12, 2016 by Heather Zeiger report
Stepwise synthesis of nanoCu. Step 1: A polymeric film of poly-Fe(vbpy)3(PF6)2 is preformed by reductive electropolymerization. Step 2: Cyanide displacement of a vbpy ligand gives the dicyano film poly-[Fe(vbpy)2(CN)2,poly-vbpy]. Step 3: Metal ions Cu(II) are incorporated by binding to the cyanide ligands. Step 4: The bound metal ions are electrochemically reduced to metal nanoparticles. Credit: (c) Proceedings of the National Academy of Sciences (2015). DOI: 10.1073/pnas.1522496112

(Phys.org)—A group of researchers from the University of North Carolina in Chapel Hill have devised a generalizable technique for making copper nanoparticles that are of a uniform size and dispersion on a polymeric thin film for the electrocatalytic reduction of carbon dioxide. Their technique involves the electrodeposition of copper and/or palladium metal onto a thin film polymer via coordination of the metal to a cyanide-based ligand complex. Their work appears in the Proceedings of the National Academy of Sciences.

Because is a greenhouse gas, researchers are interested in ways to decrease the amount of CO2 in our atmosphere. One feasible solution is to capture CO2 and reduce it to energy-rich hydrocarbon compounds. However, this needs to be done using methods that do not involve burning more fossil fuels for energy.

One method is to reduce CO2 using electrocatalysis. This involves using a metal catalyst within an electrochemical cell. Copper has been shown to be a good catalyst for the electrochemical reduction of CO2. However, there are some problems with using copper foils and crystals including low surface area, low catalytic current densities, and deactivation due to surface buildup. Copper nanoparticles have proved more desirable for these reactions, but their formation typically involves using surfactants, which are difficult to remove and often results in contamination.

Sheng Zhang, Peng Kang, Mohammed Bakir, Alexander M. Lapides, Christopher J. Dares, and Thomas J. Meyer, in their recent paper, demonstrate a technique in which they can produce copper nanoparticles that are the same size and evenly dispersed on a thin film on an electrode. This precludes the needs for a surfactant and allows for smaller particles, which has better catalytic efficiency.

The thin film used is poly-[Fe(vbpy)3][PF6]2 which is then treated with TBAPF6/CH3CN such that cyanide ions replace one of the bipyridine groups. These two cyanide groups, once part of the iron complex, serve as ligands for Cu(II). Electrochemical reduction of Cu(II) produces an ultrafine film of Cu(0) nanoparticles on the polymer surface.

Zhang, et al. tested the generalizability of their technique using palladium to make palladium nanoparticles and CuPd nanoalloys. In testing their catalysts, CuPd had the highest Faradaic efficiency for the reduction of CO2. Furthermore, studies showed that in this reaction both CO and CH4 were present.

Electroacatalytic activity was tested using a glassy carbon electrode and controlled potential electrolysis in CO2-saturated solutions of 0.1 M TBAPF6/CH3CN solution with 1M added H2O. Products in solution were analyzed using 1H NMR and products in the headspace were analyzed using gas chromatography. Products were CO, CH4, and H2, with CuPd nanoalloy producing the highest Faradaic efficiency for CH4. Additional studies on how alloy composition affects Faradaic efficiency showed that maximum yield for methane was Cu2Pd.

The formation of CH4 is important because this allows for a longer lifetime for the electrode. CO results in degradation and carbon deposition. The formation of methane keeps this from happening so quickly. Zhang, et al. speculate that the reason why the nanoalloy does so well for forming methane has to do with a palladium hydride reduction of CO. Electrochemical studies without the hydride reaction indicate that methane production is tied to Pd-H formation.

This technique involving the formation of metal or metal alloy nanoparticles on a thin film using coordination chemistry is a good step in finding ways to reduce carbon dioxide and form high energy carbon products that is environmentally safe and does not involve the use of contaminants.

Explore further: Hybrid copper-gold nanoparticles convert CO2

More information: Sheng Zhang et al. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane, Proceedings of the National Academy of Sciences (2015). DOI: 10.1073/pnas.1522496112

Abstract
Developing sustainable energy strategies based on CO2 reduction is an increasingly important issue given the world's continued reliance on hydrocarbon fuels and the rise in CO2 concentrations in the atmosphere. An important option is electrochemical or photoelectrochemical CO2 reduction to carbon fuels. We describe here an electrodeposition strategy for preparing highly dispersed, ultrafine metal nanoparticle catalysts on an electroactive polymeric film including nanoalloys of Cu and Pd. Compared with nanoCu catalysts, which are state-of-the-art catalysts for CO2 reduction to hydrocarbons, the bimetallic CuPd nanoalloy catalyst exhibits a greater than twofold enhancement in Faradaic efficiency for CO2 reduction to methane. The origin of the enhancement is suggested to arise from a synergistic reactivity interplay between Pd–H sites and Cu–CO sites during electrochemical CO2 reduction. The polymer substrate also appears to provide a basis for the local concentration of CO2 resulting in the enhancement of catalytic current densities by threefold. The procedure for preparation of the nanoalloy catalyst is straightforward and appears to be generally applicable to the preparation of catalytic electrodes for incorporation into electrolysis devices.

Related Stories

Hybrid copper-gold nanoparticles convert CO2

April 11, 2012

Copper -- the stuff of pennies and tea kettles -- is also one of the few metals that can turn carbon dioxide into hydrocarbon fuels with relatively little energy. When fashioned into an electrode and stimulated with voltage, ...

Copper foam turns carbon dioxide into useful chemicals

August 12, 2014

A catalyst made from a foamy form of copper has vastly different electrochemical properties from catalysts made with smooth copper in reactions involving carbon dioxide, a new study shows. The research, by scientists in Brown ...

Recommended for you

Force triggers gene expression by stretching chromatin

August 26, 2016

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China ...

Isolation of Fe(IV) decamethylferrocene salts

August 29, 2016

(Phys.org)—Ferrocene is the model compound that students often learn when they are introduced to organometallic chemistry. It has an iron center that is coordinated to the π electrons in two cyclopentadienyl rings. (C5H5- ...

Bringing artificial enzymes closer to nature

August 29, 2016

Scientists at the University of Basel, ETH Zurich, and NCCR Molecular Systems Engineering have developed an artificial metalloenzyme that catalyses a reaction inside of cells without equivalent in nature. This could be a ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

mreda14
not rated yet Jan 13, 2016
Why would some one thinking about taking the good carbon dioxide and make it into methane. I mean plant leaves ( trees , grass and shrubs) take carbon dioxide and turns it to the oxygen we breathe and the food we eat. Methane is a very bad and dangerous green house gas. We know that there is no life in earth without carbon dioxide.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.