Closer look reveals nematode nervous systems differ

January 14, 2016
Closer look reveals nematode nervous systems differ
A soybean cyst nematode hatching. Credit: Nathan Schroeder

Nematodes, an abundant group of roundworms that exist in nearly every habitat, have long been used as model organisms for studying the function of neurons - the basic unit of animal nervous systems. For years, it was assumed that neuron anatomy was remarkably similar across this large and diverse group. A recent study by University of Illinois researchers turns that assumption on its head.

"It was a comparative study looking at all of these different species of nematodes, including some parasites, and seeing that there are some substantial differences in the number of neurons in the ventral cord," says U of I nematologist Nathan Schroeder.

According to Schroeder, discovering this degree of variation across the group suggests that neuron number and anatomy may have changed numerous times during nematode evolution. This is significant because the evolution of nervous systems is notoriously difficult to study in complex higher animals. Being able to study the relatively simple in nematodes can shed light on some basic research questions in nervous system evolution.

"This group of animals has the simplicity that makes it easy to work with in the lab, but there are these differences across species. So, we can target that and figure out how nervous systems are evolving."

On a more practical level, the results of this study may lead to development of new nematicides - pesticides that target plant-parasitic nematodes.

"We know from some of the old nematicides that the nervous system is a very effective target. Unfortunately, some of those nematicides were very broad spectrum and would target anything with a nervous system, including us," Schroeder noted.

The study showed that soybean cyst nematodes, a major crop pest in Illinois, may have unique neurons that could be targeted by new nematicides to avoid harming beneficial soil organisms. More research will be required to determine whether such a product could be developed, but the study indicates that the potential may exist.

The authors are now focusing their attention on soybean cyst nematodes to identify unique neurons and to learn more about how those affect the movement of the microscopic roundworms in the soil and in soybean plants.

Explore further: Scientists discover new approach to managing parasitic roundworms

More information: Ziduan Han et al. Unexpected Variation in Neuroanatomy among Diverse Nematode Species, Frontiers in Neuroanatomy (2016). DOI: 10.3389/fnana.2015.00162

Related Stories

Worm pheromones trigger plant defenses, study finds

July 24, 2015

Plants can sense parasitic roundworms in the soil by picking up on their chemical signals, a team of researchers at the Boyce Thompson Institute for Plant Research (BTI), on the Cornell University campus, has found.

Compounds shared by all worms may lead to parasite treatment

April 17, 2012

( -- Worms are important decomposers in soil and are great for fishing, but in humans, the slimy wrigglers spell trouble. Hookworms, whipworms, Ascaris, Guinea worms and trichina worms are just a few parasitic nematodes ...

A worm with five faces

January 4, 2016

For eight years, a research team headed by Ralf Sommer and Matthias Herrmann travel to Réunion Island in the Indian Ocean. The scientists from the Max Planck Institute of Developmental Biology have now discovered a new nematode ...

Recommended for you

Researchers find new way to attack gastro bug

October 21, 2016

A team at Griffith's Institute for Glycomics identified a unique sensory structure that is able to bind host-specific sugar and is present on particularly virulent strains of Campylobacter jejuni.

A moving story of FHL2 and forces

October 21, 2016

Researchers from the Mechanobiology Institute (MBI) at the National University of Singapore (NUS) have revealed the molecular events leading to the regulation of cell growth and proliferation in response to stiffness of the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.