A step closer to artificial cell division—by blowing bubbles

January 22, 2016
Spontaneous phase separation of the 1-octanol (white) and liposome (gray). Credit: Delft University of Technology

By blowing extremely small bubbles, researchers from the Kavli Institute of Nanoscience at Delft University of Technology (TU Delft) have found an efficient way of producing so-called liposomes – very small bubble-like structures often used to deliver medicine, but also key to generating artificial cells. The scientists publish their findings in the online edition of Nature Communications on Friday 22 January.

Cell division

One of the greatest challenges in the life sciences today is the assembly of an artificial cell from a set of individual components, an effort driven by the urge to improve our understanding of how work. One of the first steps on the road to generating such artificial cells is the ability to produce . These are very small, bubble-like structures with a lipid wall and filled with water. In this respect, they very much resemble empty "real" cells. Liposomes are already used for various purposes, including the delivery of drugs into the human body.

Lab on a chip

Researchers at TU Delft have now succeeded in producing liposomes in a very efficient way. They use a microfluidic 'lab-on-a-chip' technique to generate the structures assisted by minute liquid flows, in a process not unlike blowing soap bubbles (see video). "Ways of making liposomes already existed," says Siddharth Deshpande, a postdoctoral researcher in the team lead by Cees Dekker, "but these had significant drawbacks for our purposes. They were too slow and, above all, not pure enough."

The video will load shortly
The bubble blower in action: small 20 micron liposomes are formed by fluid flows from the nozzle. Credit: Delft University of Technology


The new 'bubbling-blowing' method uses a type of alcohol as a solvent. One of the problems with the earlier techniques was that they left behind an oily solvent residue in the liposomes. In search of a better alternative, Deshpande tried using 1-octanol instead. And the results exceeded all expectations, because the researchers observed that this substance moves quickly and spontaneously to one side of the newly-formed liposome, where it forms a droplet of 1-octanol which spontaneously separates from the host structure of its accord, within a few minutes.

The video will load shortly
Spontaneous phase separation of the 1-octanol (white) and liposome (gray). Credit: Delft University of Technology

"What remains," Deshpande explains, "are pure liposomes with the dimensions of a biological cell, 5-20 micrometres, and a lipid wall. We have since been able to show that this wall is very much like that of a 'real' cell – from a bacterium, for example."


Liposome Bubble blower
SMall 20 micron liposomes (purple bubbles) are formed by fluid flows from the nozzle. Credit: Delft University of Technology

The new method has been dubbed octanol-assisted liposome assembly, or OLA. As Dekker explains: "OLA offers a flexible platform for producing the of the future. We want to use the liposomes as the basic material for those cells. Our next goal is to make them divide by adding special proteins such as FtsZ and ZipA, which form rings around the 'equator' of the liposome. We are already conducting experiments with this technique. If they succeed, we could make 'soap bubbles' capable of producing autonomous daughter bubbles. This should give us spectacular insight into the mechanisms bacterial cells use to divide."

Explore further: Heat-activated 'grenade' to target cancer

More information: Nature Communications, Siddharth Deshpande, Yaron Caspi, Anna EC Meijering, and Cees Dekker "Octanol-assisted liposome assembly on chip", DOI: 10.1038/NCOMMS10447

Related Stories

Heat-activated 'grenade' to target cancer

October 31, 2015

Researchers have developed cancer drug-packed 'grenades' armed with heat sensitive triggers, allowing for treatment to be targeted directly at tumours, according to two studies due to be presented at the National Cancer Research ...

A possible alternative to antibiotics

November 4, 2014

Scientists from the University of Bern have developed a novel substance for the treatment of severe bacterial infections without antibiotics, which would prevent the development of antibiotic resistance.

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.