Block copolymer hydrogels as multifunctional effective cryoprotecting agents for red blood cells

January 29, 2016
Block copolymer hydrogels as multifunctional effective cryoprotecting agents for red blood cells

Freezing of medical tissue and cells usually requires the addition of cryopreservatives, although the added compounds can have undesired effects in subsequent applications. In the journal Angewandte Chemie, British scientists report on the synthesis of a block copolymer hydrogel, which not only facilitates the cryoprotection of red blood cells, but also serves as a suitable matrix for further tissue engineering. This points to an attractive one-pot solution for whole blood cryopreservation and tissue-engineering applications.

Freezing and thawing imposes enormous stress on the living cell, but long-term storage of medical samples is often possible only in the frozen state. To prevent ice-induced damage during freezing, anti-freeze compounds are commonly added that mimic the water environment and replace the water molecules from the cell components. Water-miscible organic solvents, glycoproteins, and engineered starch have been used for this purpose, but they share biocompatibility issues, and stripping off the solvents from the can be challenging as well. Seeking for alternatives, Matthew I. Gibson and Daniel E. Mitchell from the University of Warwick in collaboration with Steven P. Armes and Joseph R. Lovett at the University of Sheffield have now synthesized a block copolymer hydrogel that is an excellent cryopreserving agent when used in tandem with ice-growth inhibiting polymers. It can also be used as a hydrogel matrix for cultivation and further engineering of the thawed cells.

This block copolymer hydrogel comes in nanometer-sized worm-like shape if it is warm, but changes its appearance in the cold: "Such worms form a soft, free-standing aqueous hydrogel at 20 °C, but undergo a reversible worm-to-sphere transition upon cooling below 12 °C," the scientists say. In the worm-shaped (hydrogel) state, it makes up a suitable matrix for tissue engineering, while in the spheric state it is a fluid that allows facile cell and tissue sterilization by ultrafiltration.

The most important property, however, is cryoprotection. The scientists show that the gel worms form a hydrated matrix around the cells, replacing the water. Although the worms alone cannot protect the cells, in conjugation with the biocompatible polymer that inhibits ice recrystallization, significant cell recovery is possible, the authors say. "This is the first demonstration that a wholly synthetic (polymer or otherwise) formulation can be used to achieve efficient cell cryopreservation." The gel can be further optimized by rational design. One hydrogel - two applications, or, as the authors put it: "an attractive one-pot solution for future whole-blood cryopreservation and applications."

Explore further: Bioengineers develop highly elastic biomaterial for better wound healing

More information: Daniel E. Mitchell et al. Combining Biomimetic Block Copolymer Worms with an Ice-Inhibiting Polymer for the Solvent-Free Cryopreservation of Red Blood Cells, Angewandte Chemie International Edition (2016). DOI: 10.1002/anie.201511454

Related Stories

New protein gel for tissue regeneration

January 21, 2016

The human body can repair a lot of tissue damage itself. But sometimes, for instance in case of operations of wounds, it needs help. In her doctoral research, Gosia Wlodarczyk-Biegun developed a protein polymer that provides ...

Recommended for you

New electrical energy storage material shows its power

August 24, 2016

A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range.

Calcium channel blockers caught in the act at atomic level

August 24, 2016

An atomic level analysis has revealed how two classes of calcium channel blockers, widely prescribed for heart disease patients, produce separate therapeutic effects through their actions at different sites on the calcium ...

Bio-inspired tire design: Where the rubber meets the road

August 24, 2016

The fascination with the ability of geckos to scamper up smooth walls and hang upside down from improbable surfaces has entranced scientists at least as far back as Aristotle, who noted the reptile's remarkable feats in his ...

Selecting the right house plant could improve indoor air

August 24, 2016

Indoor air pollution is an important environmental threat to human health, leading to symptoms of "sick building syndrome." But researchers report that surrounding oneself with certain house plants could combat the potentially ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.