Team adds to quantum computing toolkit with mixed-atom logic operations

December 16, 2015
An ion trap used in NIST quantum computing experiments demonstrating logic operations with two different types of ions (charged atoms). One magnesium ion and one beryllium ion are trapped 4 micrometers apart near the cross-shaped opening at the center of both photos.The larger-scale photo shows the gold-on-alumina trap inside a case that protects against electrical interference. Credit: Blakestad/NIST

Physicists at the National Institute of Standards and Technology (NIST) have added to their collection of ingredients for future quantum computers by performing logic operations—basic computing steps—with two atoms of different elements. This hybrid design could be an advantage in large computers and networks based on quantum physics.

The NIST experiment, described in the Dec. 17 issue of Nature, manipulated one magnesium and one beryllium ion (charged atom) confined in a custom trap (see photo). The scientists used two sets of laser beams to entangle the two ions—establishing a special quantum link between their properties—and to perform two types of logic operations, a controlled NOT (CNOT) gate and a SWAP gate. The same issue of Nature describes similar work with two forms of performed at the University of Oxford.

"Hybrid quantum computers allow the unique advantages of different types of quantum systems to be exploited together in a single platform," said lead author Ting Rei Tan. "Many research groups are pursuing this general approach. Each ion species is unique, and certain ones are better suited for certain tasks such as memory storage, while others are more suited to provide interconnects for data transfer between remote systems."

Gates are used to build circuits or programs. As in classical computing, a quantum bit (qubit) can have a value of 0 or 1. But unlike classical bits, a qubit can also be in a "superposition" of both 0 and 1 values at the same time. In the NIST experiment, the qubits are based on the ions' spin directions (spin up is 1 and spin down is 0). A CNOT gate flips the second (target) qubit if the first (control) qubit is a 1; if it is a 0, the target bit is unchanged. If the control qubit is in a superposition, the ions become entangled. A SWAP gate interchanges the qubit states, including superpositions.

The two types of ions vary in their response to light, so lasers can be tuned to manipulate one without disturbing the other. This minimizes interference. But getting the whole setup to operate coherently was a challenge. The researchers developed a technique to track and stabilize the laser beam phases, that is, the exact positions of the undulating light waves.

"For the logic gate to work, the phase has to be at the correct values. Also, these phases have to be stable, so we can apply the same condition over many repetitions," Tan said.

If they can be built, quantum computers could solve problems now considered intractable, such as breaking today's best data encryption codes. The same NIST group has demonstrated many other building blocks for quantum computers based on trapped ions. For example, the group demonstrated the first quantum logic gate (a CNOT gate) on individual qubits in 1995 using a single beryllium ion.

NIST's latest techniques provide a complete or "universal" set of quantum gates—meaning they could perform any possible computation—using ions of multiple elements. A universal set of quantum gates is one of the so-called DiVincenzo criteria (see http://arxiv.org/pdf/quant-ph/0002077.pdf), which describe the elements needed to build a practical quantum computer.

NIST's new mixed-atom gates could also help make better simulators to model quantum systems and could enable faster and simpler measurements in applications such as NIST's experimental quantum logic clock.

The mixed-atom gates rely on NIST's technique for entangling ions demonstrated more than a decade ago. Multiple carefully tuned apply an oscillating force to a pair of ions. If the ions are in different internal states, they feel different laser forces that alter the ions' external motions. This coupling of internal states with external motions has the effect of entangling the .

Explore further: How losing information can benefit quantum computing

More information: T.R. Tan, J.P. Gaebler, Y. Lin, Y. Wan, R. Bowler, D. Leibfried, and D.J. Wineland. 2015. Multi-element logic gates for trapped ion qubits. Nature. Dec. 17. nature.com/articles/doi:10.1038/nature16186

Related Stories

How losing information can benefit quantum computing

November 24, 2013

Suggesting that quantum computers might benefit from losing some data, physicists at the National Institute of Standards and Technology (NIST) have entangled—linked the quantum properties of—two ions by leaking judiciously ...

Ion duet offers tunable module for quantum simulator

August 6, 2014

Physicists at the National Institute of Standards and Technology (NIST) have demonstrated a pas de deux of atomic ions that combines the fine choreography of dance with precise individual control.

Paving the way for a faster quantum computer

August 11, 2015

A team of physicists from the University of Vienna and the Austrian Academy of Sciences have demonstrated a new quantum computation scheme in which operations occur without a well-defined order. The researchers led by Philip ...

Quantum computing advance locates neutral atoms

August 12, 2015

For any computer, being able to manipulate information is essential, but for quantum computing, singling out one data location without influencing any of the surrounding locations is difficult. Now, a team of Penn State physicists ...

A little light interaction leaves quantum physicists beaming

August 24, 2015

A team of physicists at the University of Toronto (U of T) have taken a step toward making the essential building block of quantum computers out of pure light. Their advance, described in a paper published this week in Nature ...

Recommended for you

Electrons at the speed limit

August 26, 2016

Electronic components have become faster and faster over the years, thus making powerful computers and other technologies possible. Researchers at ETH Zurich have now investigated how fast electrons can ultimately be controlled ...

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.