How to build a real lightsaber

December 11, 2015 by Gianluca Sarri, The Conversation
Credit: David James/Lucasfilm

As even casual Star Wars fans will know, lightsabers are probably the coolest weapon ever to make an appearance on the big screen. Lightsaber fights are so elegant that they are almost hypnotic and, even though not all of us might have a strong enough flow of Force running through our veins, a lightsaber in the right hand is by far the deadliest weapon to be found in the universe.

The idea behind a lightsaber is simple genius: a light-weight and immensely powerful tool that uses a blade of energy to not only slice up disciples of the Dark Side in a single blow but also act as an effective shield against laser blasts. So why don't we have working lightsabers in real life? Surely physicists must be smart enough (and big enough Star Wars fans) to be able to produce one of these incredible objects.

The obvious way of building a lightsaber would be to use a laser, which can be seen as a particularly bright and directional burst of light. But even though is continuously striding towards more efficient and practical machines, we are still miles away from a working lightsaber. Let's see why.

The first challenge is making the blade of your lightsaber an acceptable size, let's say around three feet or so. To do this, you would have to make the laser beam come to a stop at a certain point. This won't be easy since light has a rather strong natural tendency to keep travelling if it doesn't encounter any obstacles.

The video will load shortly

One solution could be to place a small mirror at the tip of the blade. But can you imagine how embarrassing it would be to show up in the battlefield with a lightsaber surrounded by a whole supporting structure for a tiny mirror at its end? Apart from being really fragile, such a blade wouldn't be able to hurt anyone.

The second problem is that the blade will need a lot of power to be able to slice through materials. Welding lasers used in industry can do that but they typically require several kilowatts of power. The power supply for these lasers is huge and would certainly not fit in the tiny hilt of a lightsaber. Plus you would need a considerable cooling mechanism if you didn't want the hilt to become incandescent and to melt your hand.

Besides these more practical points, the amazing effects of lightsaber fights would be unfeasible. Two laser-based lightsabers would never clash against each other. They would simply pass through one another with no effect. What's more, a laser focuses light in one direction so sharply that you can't see it unless you look directly down its axis. This is the reason why lasers used in clubs need smoke or fog to be seen. The smoke particles act as tiny scatterers that spray the laser light and make the beams visible.

But all is not lost. No one ever said a lightsaber had to be based on laser technology. An alternative exists already in the form of plasma. Plasma is effectively gas so hot that its atoms are broken into their more fundamental components, namely electrons and nuclei. They can be generated by applying powerful electrical discharges to a gas (lightning is an example) and are able to sustain searing hot temperatures as high as millions of degrees Celsius.

Most interestingly, hot plasmas tend to emit different colours depending on the gas they are made of. For example, a neon light is nothing but a tube filled with neon gas in a plasma state. The green lightsabers of Jedi knights could be made of chlorine plasma, which emits predominantly green light, while the red lightsabers of the Sith villains could be made of helium, which mostly emits in the red-to-violet region of the spectrum.

How might a plasma lightsaber work in practice? A small but powerful hidden in the hilt could be attached to a long and tiny filament that carries the electrical discharge and puffs some gas around it. When you turn it on, the filament would become incandescent and the gas around it would turn into plasma, emitting its colour in every direction. The searing heat of the plasma would instantaneously melt any object it touches, cutting cleanly like a .

You might still have an issue or two in making everything compact (where are you going to store the gas to be continuously puffed out of the filament?) and sturdy enough to resist a blow from another lightsaber, but it's a good start. After all, the Galactic Empire wasn't built in a day.

Explore further: Igniting the air for atmospheric research

Related Stories

Igniting the air for atmospheric research

February 18, 2015

Scientists from Vienna and Moscow have created a high-energy mid-infrared laser powerful enough to create shining filaments in the air. Such devices could be used to detect chemical substances in the atmosphere.

Physicists show 'molecules' made of light may be possible

September 10, 2015

It's not lightsaber time, not yet. But a team including theoretical physicists from the National Institute of Standards and Technology (NIST) has taken another step toward building objects out of photons, and the findings ...

Japanese team fires world's most powerful laser

July 29, 2015

(—A team of researchers and engineers at Japan's Osaka University is reporting that they have successfully fired what they are claiming is the world's most powerful laser. In their paper published in the journal ...

Recommended for you

Microsoft aims at Apple with high-end PCs, 3D software

October 26, 2016

Microsoft launched a new consumer offensive Wednesday, unveiling a high-end computer that challenges the Apple iMac along with an updated Windows operating system that showcases three-dimensional content and "mixed reality."

Making it easier to collaborate on code

October 26, 2016

Git is an open-source system with a polarizing reputation among programmers. It's a powerful tool to help developers track changes to code, but many view it as prohibitively difficult to use.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Dec 11, 2015
Perhaps a stable magnetic vortex to trap the plasma. A gas source in not needed; there is plenty of air! Just a powerful particle beam of some kind will generate the plasma and even help set up some self-confining fields within the plasma column.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.