Physicists discover material for a more efficient energy storage

December 17, 2015
Physicists discover material for a more efficient energy storage
Graphene flakes in the plastics graphene compound magnified 40.000 times Credit: University of Luxembourg

Predictions of physicists of the University of Luxembourg recently lead to the discovery of a material with special electric properties which engages the interest of plastics producing industry. Three years ago, physicists from Luxembourg had theoretically predicted the unusual characteristics of a particular composite material. These calculations could now be confirmed by experiment in cooperation with the "Centre de Recherche Paul Pascal" in Bordeaux, France, and resulted in the discovery of a so-called high-k-material, which might enable the production of better energy storage devices - the basis for smaller, faster and more efficient electronics.

The earlier calculations made by the team around Tanja Schilling, professor of physics at the University of Luxembourg, were at first rather bad news for the field of materials research: they indicated that certain compound materials made of polymers and flaky graphene, unlike those made of polymers and carbon nanotubes, did not increase the conductivity of the material to the degree that was generally expected until then. It was a surprising conclusion at the time which questioned the use of graphene in order to increase conductivity.

This prediction, however, now lead to a highly promising discovery: the effect that put the conductivity of the plastics-graphene-compound into question, causes it to have remarkable dielectric properties. This means that one can generate a strong electric field inside of it - the fundamental property for the production of efficient capacitors. These are tiny components that can store energy statically and occur in almost all electronic devices, where they act as voltage regulators or information storage, among other things. Computers, for example, contain billions of those.

"Materials with a high dielectric constant, so-called high-k-materials, are highly sought after," says Tanja Schilling, head of the research project at the Faculty of Science, Technology and Communication of the University of Luxembourg. "The discovery based on our predictions was now published in the renowned journal Nature Communications - which we are very happy about."

The special of the compound material occur as a result of its liquid crystal properties impeding the arrangement of the graphene flakes into a conducting structure. So when there is an electric current, it does not flow directly through the compound, but instead generates a strong electric field. While in other compound materials the current permeable effect is the dominant one, the Luxembourg physicists could demonstrate mathematically that, in this case, the liquid crystal properties play the major role and are responsible for the unexpected electric properties.

The chemicals company Solvay, partner of the research project, now wants to continue the research around this new high-k-material, aiming to produce synthetics for particularly efficient capacitors and further applications in the future.

Explore further: Researchers create powerful pseudomagnetic fields in graphene

More information: Jinkai Yuan et al. Graphene liquid crystal retarded percolation for new high-k materials, Nature Communications (2015). DOI: 10.1038/ncomms9700

Related Stories

New graphene-based catalysts for the energy industry

August 26, 2015

Researchers at the Universitat Jaume I in Spain have developed materials based on graphene that can catalyse reactions for the conversion and storage of energy. The technology patented by the UJI combines graphene and organometallic ...

Researchers develop flexo-electric nanomaterial

November 17, 2015

Researchers at the University of Twente's MESA+ research institute, together with researchers from several other knowledge institutions, have developed a 'flexo-electric' nanomaterial. The material has built-in mechanical ...

Frustrated magnets point towards new memory

September 23, 2015

Theoretical physicists from the University of Groningen, supported by the FOM Foundation, have discovered that so-called 'frustrated magnets' can produce skyrmions, tiny magnetic vortices that may be used in memory storage. ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Dec 17, 2015
The paper is not paywalled, and it says "a very high dielectric constant of 753 at 100 Hz along with a low loss tangent of only 0.4". That is a huge dielectric constant!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.