Researchers develop 'metasurface' laser for terahertz range

December 18, 2015

Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have identified a new way to make a semiconductor laser that operates at terahertz frequencies. The breakthrough could lead to development of a new class of high-quality, powerful lasers for use in space exploration, military and law enforcement efforts and other applications.

The terahertz range of frequencies occupies the space on the electromagnetic spectrum between microwave and infrared. Terahertz waves can be used to analyze plastics, clothing, semiconductors and works of art without damaging the materials being examined; for chemical sensing and identification; and to investigate the formation of stars and composition of planetary atmospheres.

Researchers led by Benjamin Williams, a UCLA associate professor of electrical engineering, have created the first vertical-external-cavity surface-emitting , or VECSEL, that operates in the terahertz range. VECSELs that use visible light have been used extensively to generate high-powered beams, but the technique has not previously been adapted for .

To make it possible to build an external cavity laser with a high-quality beam, the UCLA researchers created a VECSEL with a "reflectarray metasurface mirror." The device is so named because it is made up of an array of many small antenna-coupled laser cavities such that when a terahertz wave hits the array, it doesn't "see" the cavities, but rather is reflected as if it were being reflected from a simple, flat mirror. Unlike a simple mirror however, the mirror amplifies as well as reflecting them.

"This is the first time a metasurface and a laser have been combined," Williams said. "The VECSEL approach provides a route to have higher output powers simultaneously with excellent beam quality in the . The metasurface approach further allows one to engineer the beam to have the desired polarization, shape and spectral properties."

The research was published this month in Applied Physics Letters.

Creating a beam that is symmetrical and straight over large distances and changing thermal conditions is a challenge for many semiconductor lasers, but particularly for terahertz quantum cascade lasers, which usually use metal laser cavities with dimensions much smaller than the wavelength.

Luyao Xu, a graduate researcher in Williams' lab and lead author of the study, said, "By using this amplifying metasurface as part of the external cavity, not only can we improve the beam pattern, but we can also introduce new functionality to this laser with different cavity designs. For example, by using a freestanding wire-grid polarizer, or filter, as a second mirror, we could optimize the lasers' output power and efficiency simply by rotating the polarizer."

Xu said the researchers already are working on several new designs to further advance the technology.

Other authors of the study were Christopher Curwen, a UCLA graduate researcher in Williams' lab; Philip W.C. Hon, who recently earned his doctorate from UCLA; Qi-Sheng Chen, then an engineer at Northrop Grumman Aerospace Systems; and Tatsuo Itoh, who holds UCLA's Northrop Grumman Chair in Electrical Engineering.

The research was funded by the National Science Foundation. Researchers used the UCLA Nanoelectronics Research Facility to make the device.

Explore further: Generating broadband terahertz radiation from a microplasma in air

More information: Luyao Xu et al. Metasurface external cavity laser, Applied Physics Letters (2015). DOI: 10.1063/1.4936887

Related Stories

Metamaterials shine bright as new terahertz source

April 23, 2015

Metamaterials allow design and use of light-matter interactions at a fundamental level. An efficient terahertz emission from two-dimensional arrays of gold split-ring resonator metamaterials was discovered as a result of ...

New VECSEL could mean a step forward for spectroscopy

October 25, 2010

(PhysOrg.com) -- "Unfortunately, for spectroscopy, the beam quality of quantum cascade lasers is not satisfying," Hans Zogg tells PhysOrg.com. "We are developing lasers for the mid-infrared range which have an especially ...

Recommended for you

Electron highway inside crystal

December 8, 2016

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their ...

Researchers improve qubit lifetime for quantum computers

December 8, 2016

An international team of scientists has succeeded in making further improvements to the lifetime of superconducting quantum circuits. An important prerequisite for the realization of high-performance quantum computers is ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.