Shining a light on chicken embryo health can reduce costs, prevent spread of disease

December 15, 2015

Checking on bird embryos might just have gotten easier. A research team from Daegu Gyeongbuk Institute of Science and Technology (DGIST), South Korea, have demonstrated a new way of monitoring the blood flow of bird embryos still in their eggs, which could provide poultry farmers with a relatively simple and cheap technique to track the health of their livestock.

The researchers have published their work in The Optical Society's journal Biomedical Optics Express.

"In the poultry industry, as to whether the embryo will survive or not is an important cost saving," said Cheol Song, assistant professor of robotics engineering, DGIST. With early detection, farmers could replace weak and sick with new ones. If the embryos are infected or diseased, early detection can also reduce contamination in the incubation chamber.

Currently, most poultry farmers use a method called candling to ensure their future chicks are developing properly. Typically, during the seventh or eighth day of incubation, they check on the embryo's health by shining the egg with a light in a dark room, revealing the embryo's .

But the method has some drawbacks. Before day seven it can't easily or accurately monitor the embryo's health. It's also not that effective during later stages of incubation – as the embryo develops, it grows organs and muscles that block the view. Farmers are also unable to use candling to measure important vital signs like , making it difficult to determine whether an embryo will survive.

Other more sophisticated techniques are invasive, complex, expensive, or don't work for an entire incubation period, approximately 21 days.

Researchers have explored a new method called diffuse speckle contrast analysis (DSCA). The technique was recently developed to measure blood flow in tissues, and particularly in microcirculation – the flow through the tiniest vessels in the body. For example, Song said, the method is being commercialized for diagnosing "diabetic foot," in which diabetes can cause damage to the feet's blood vessels. This is the first time DSCA been applied to bird embryos.

When a laser beam shines through tissue, the light scatters and creates splotches of dark and light called a speckle pattern. It turns out that if the pattern is moving – like in flowing blood – it's blurry with low contrast. But if the tissue moves slowly or is stationary, then you would get a high-contrast image of the pattern. By analyzing the contrast of the light, which penetrates deep in the tissue, researchers can calculate the relative speeds of the blood flow. Because blood transports nutrients and oxygen, its flow is a direct indicator of an embryo's metabolism, development and health.

The researchers' experiments showed that their method accurately revealed blood flow, measuring how the rate increases every day as the embryo develops in its shell. They were able to monitor the embryo's vital signs for the entire incubation period. And when the researchers placed an egg in the refrigerator – to simulate stressful conditions – they measured a more sluggish flow rate, showing that the method can distinguish a healthy embryo from a weakened one.

Implementing the technique is also straightforward, Song said, and could be commercialized within a few years. "In the near future, this method can help in the automated inspection of chick embryos," he said. If researchers develop an automatic algorithm to detect and monitor blood flow, then they can build a robotic system to examine the eggs.

Explore further: New embryo image processing technology could assist in IVF implantation

More information: Chaebeom Yeo et al. Avian embryo monitoring during incubation using multi-channel diffuse speckle contrast analysis, Biomedical Optics Express (2015). DOI: 10.1364/BOE.7.000093

Related Stories

Placenta's oxygen tanks for early embryos revealed

September 10, 2015

A new role for the placenta has been revealed by University of Manchester scientists who have identified sites which store, and gradually release, oxygen for newly formed embryos in the weeks after the baby's heart is developed.

Shaping contraction

November 20, 2015

You were once a hollow shell. To sculpt that hollow ball into an organism with layers of internal organs, muscle and skin, portions of that embryonic 'shell' folded inwards. The same happens to fruit fly embryos, and researchers ...

Recommended for you

Feeling the force between sand grains

August 24, 2016

For the first time, Lawrence Livermore National Laboratory (LLNL) researchers have measured how forces move through 3D granular materials, determining how this important class of materials might pack and behave in processes ...

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...

Funneling fundamental particles

August 24, 2016

Neutrinos are tricky. Although trillions of these harmless, neutral particles pass through us every second, they interact so rarely with matter that, to study them, scientists send a beam of neutrinos to giant detectors. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.