Research team finds way to produce large-area graphene 100 times cheaper

November 19, 2015
Research team finds way to produce large-area graphene 100 times cheaper
Dr Ravinder Dahiya

Graphene has been hailed as a wonder material since it was first isolated from graphite in 2004. Graphene is just a single atom thick but it is flexible, stronger than steel, and capable of efficiently conducting heat and electricity.

However, widespread industrial adoption of graphene has so far been limited by the expense of producing it. Affordable graphene production could lead to a wide range of new technologies reaching the market, including synthetic skin capable of providing sensory feedback to people with limb prostheses.

Researchers at the University of Glasgow have now found a way to produce large sheets of graphene using the same cheap type of used to manufacture found in many household devices.

In a new paper published today in the journal Scientific Reports, a team led by Dr Ravinder Dahiya explain how they have been able to produce large-area graphene around 100 times cheaper than ever before.

Graphene is often produced by a process known as chemical vapour deposition, or CVD, which turns gaseous reactants into a film of graphene on a special surface known as a substrate.

The research team used a similar process to create high-quality graphene across the surface of commercially-available copper foils of the type often used as the negative electrodes in lithium-ion batteries. The ultra-smooth surface of the copper provided an excellent bed for the graphene to form upon.

They found that the graphene they produced offered a stark improvement in the electrical and optical performance of transistors which they made compared to similar materials produced from the older process.

Dr Dahiya, of the University of Glasgow's School of Engineering, said: "The commercially-available copper we used in our process retails for around one dollar per square metre, compared to around $115 for a similar amount of the copper currently used in graphene production. This more expensive form of copper often required preparation before it can be used, adding further to the cost of the process.

"Our process produces high-quality at low cost, taking us one step closer to creating affordable new electronic devices with a wide range of applications, from the smart cities of the future to mobile healthcare.

"Much of my own research is in the field of . Graphene could help provide an ultraflexible, conductive surface which could provide people with prosthetics capable of providing sensation in a way that is impossible for even the most advanced prosthetics today.

"It's a very exciting discovery and we're keen to continue our research."

The team's paper, titled 'Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices', is published in Scientific Reports.

Explore further: Study finds faster, cheaper way to cool electronic devices

More information: Emre O. Polat et al. Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices, Scientific Reports (2015). DOI: 10.1038/srep16744

Related Stories

From graphene hydrogels to high-performance anodes

March 18, 2015

How can the electrodes of batteries be made more efficient? In the journal Angewandte Chemie, American scientists describe a powerful approach that uses solvated graphene frameworks as the anode material. Assembled in a lithium ...

Recommended for you

Neuromorphic computing mimics important brain feature

August 18, 2016

(Phys.org)—When you hear a sound, only some of the neurons in the auditory cortex of your brain are activated. This is because every auditory neuron is tuned to a certain range of sound, so that each neuron is more sensitive ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

Picoscale precision though ultrathin film piezoelectricity

August 10, 2016

Piezoelectricity (aka the piezoelectric effect) occurs within certain materials – crystals (notably quartz), some ceramics, bone, DNA, and a number of proteins – when the application of mechanical stress or vibration ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

DonGateley
5 / 5 (2) Nov 20, 2015
This is huge if it works out and can scale up. There is an incredible amount of technology currently blocked by the production cost and availability of large area graphene.
antialias_physorg
5 / 5 (3) Nov 20, 2015
Nice. The article linked at the bottom is well worth the read.
RealScience
5 / 5 (2) Nov 20, 2015
Thanks, AA - the article is excellent!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.