Explaining a mysterious barrier to fusion known as the 'density limit'

November 10, 2015
Visualization of a magnetic island growing in a tokamak plasma. Credit: Qian Teng

For more than 50 years physicists have puzzled over a daunting mystery: Why do tokamak plasmas spiral apart when reaching a certain maximum density and halt fusion reactions? This "density limit" serves as a barrier that prevents tokamaks from operating at peak efficiency, and understanding what sets this maximum density would speed the development of fusion as a safe, clean and abundant energy source.

Recently, researchers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have revisited an old idea: bubbles called magnetic islands that form in the confining magnetic field produce the observed density limit. The PPPL team, led by David Gates with Roscoe White, Luis Delgado-Aparicio and Dylan Brennan, found new physics overturning decades of thought on the growth of these bubbles.

The new PPPL research locates this physics in the process by which the islands are cooled by impurities that stray plasma particles kick up from the walls of the tokamak. Countering this cooling is heating that researchers pump into the plasma. But the scientists found that even a tiny bit of net cooling in the interior of the islands can cause them to grow exponentially, leading to disruption of the crucial current that runs through the plasma and completes the that holds the hot gas together.

If confirmed by experiment the findings could lead to steps to overcome the barrier, also known as the "Greenwald limit" after Massachusetts Institute of Technology physicist Martin Greenwald, who derived an empirical rule for it. The PPPL model quantitatively reproduces the empirical Greenwald density limit.

Still to come are explorations of effects such as turbulent transport of particles, heat and the impurities that lead to cooling. Examining these conditions should provide further evidence that the local power balance inside an island can serve as a very accurate prediction of the .

Explore further: Scientists propose an enhanced new model of the source of a mysterious barrier to fusion known as the 'density limit'

More information: Abstract: NP12.00012 A Novel Explanation of the Greenwald Density Limit—Thermal-Resistive Tearing Mode
Session Session NP12: Poster Session V (MHD, Heating, Current Drive, HBT-EP; Magnetic Reconnection; Astrophysical and Space Plasmas)

Related Stories

Physicists see solution to critical barrier to fusion

April 23, 2012

(Phys.org) -- Physicists have discovered a possible solution to a mystery that has long baffled researchers working to harness fusion. If confirmed by experiment, the finding could help scientists eliminate a major impediment ...

Recommended for you

Shocks in the early universe could be detectable today

October 27, 2016

(Phys.org)—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...

Bubble nucleus discovered

October 27, 2016

Research conducted at the National Superconducting Cyclotron Laboratory at Michigan State University has shed new light on the structure of the nucleus, that tiny congregation of protons and neutrons found at the core of ...

Neutrons prove the existence of 'spiral spin-liquid'

October 27, 2016

Magnetic moments ("spins") in magnetic solids are capable of forming the most diverse structures. Some of them are not only of interest from a scientific point of view, but also from a technical standpoint: processors and ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Nov 11, 2015
In other words, one of the CRITICAL problems that has been recognized for 60 years (plama contamination) is even worse than we thought it was. As soon as we develop machines which don't have surfaces, we'll have cheap fusion power available to all.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.