Graphene and metal nitrides improve the performance and stability of energy storage devices

November 18, 2015
Graphene and metal nitrides improve the performance and stability of energy storage devices
Illustration of the asymmetric supercapacitor, consisting of vertically aligned graphene nanosheets coated with iron nitride and titanium nitride as the anode and cathode, respectively. Credit: WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Supercapacitors can be charged and discharged tens of thousands of times, but their relatively low energy density compared to conventional batteries limits their application for energy storage. Now, A*STAR researchers have developed an 'asymmetric' supercapacitor based on metal nitrides and graphene that could be a viable energy storage solution.

A supercapacitor's viability is largely determined by the materials of which its anodes and cathodes are comprised. These electrodes must have a per unit weight, and capacitance and be physically robust so they do not degrade during operation in liquid or hostile environments.

Unlike traditional supercapacitors, which use the same material for both electrodes, the anode and cathode in an asymmetric supercapacitor are made up of different materials. Scientists initially used metal oxides as asymmetric supercapacitor electrodes, but, as metal oxides do not have particularly high electrical conductivities and become unstable over long operating cycles, it was clear that a better alternative was needed.

Metal nitrides such as , which offer both high conductivity and capacitance, are a promising alternative, but they tend to oxidize in watery environments that limits their lifetime as an electrode. A solution to this is to combine them with more stable materials.

Hui Huang from A*STAR's Singapore Institute of Manufacturing Technology and his colleagues from Nanyang Technological University and Jinan University, China, have fabricated asymmetric supercapacitors which incorporate metal nitride electrodes with stacked sheets of graphene.

To get the maximum benefit from the graphene surface, the team used a precise method for creating thin-films, a process known as atomic layer deposition, to grow two different materials on vertically aligned graphene nanosheets: titanium nitride for their supercapacitor's cathode and iron nitride for the anode. The cathode and anode were then heated to 800 and 600 degrees Celsius respectively, and allowed to slowly cool. The two electrodes were then separated in the asymmetric supercapacitor by a solid-state electrolyte, which prevented the oxidization of the metal nitrides.

The researchers tested their supercapacitor devices and showed they could cycle 20,000 times and exhibited both high capacitance and high power density. "These improvements are due to the ultra-high surface area of the vertically aligned graphene substrate and the method that enables full use of it," says Huang. "In future research, we want to enlarge the working-voltage of the device to increase energy density further still," says Huang.

Explore further: Kitchen sponge supercapacitor has many porous benefits

More information: Changrong Zhu et al. All Metal Nitrides Solid-State Asymmetric Supercapacitors, Advanced Materials (2015). DOI: 10.1002/adma.201501838

Related Stories

Kitchen sponge supercapacitor has many porous benefits

February 6, 2015

By dipping small pieces of an ordinary kitchen sponge into solutions of nanoscale electrode materials, scientists have created a light-weight, low-cost supercapacitor that benefits from the sponge's porous structure. The ...

Energy storage of the future

October 20, 2014

Personal electronics such as cell phones and laptops could get a boost from some of the lightest materials in the world.

New technique for 'seeing' ions at work in a supercapacitor

June 22, 2015

Researchers from the University of Cambridge, together with French collaborators based in Toulouse, have developed a new method to see inside battery-like devices known as supercapacitors at the atomic level. The new method ...

Recommended for you

Particles self-assemble into Archimedean tilings

December 8, 2016

(Phys.org)—For the first time, researchers have simulated particles that can spontaneously self-assemble into networks that form geometrical arrangements called Archimedean tilings. The key to realizing these structures ...

Nano-calligraphy on graphene

December 8, 2016

Scientists at The University of Manchester and Karlsruhe Institute of Technology have demonstrated a method to chemically modify small regions of graphene with high precision, leading to extreme miniaturisation of chemical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.