Coming to a monitor near you: A defect-free, molecule-thick film

November 26, 2015
Schematic of a laser beam energizing a monolayer semiconductor made up of molybdenum disulfide (MoS2). The red glowing dots are particles excited by the laser. Credit: Der-Hsien Lien

An emerging class of atomically thin materials known as monolayer semiconductors has generated a great deal of buzz in the world of materials science. Monolayers hold promise in the development of transparent LED displays, ultra-high efficiency solar cells, photo detectors and nanoscale transistors. Their downside? The films are notoriously riddled with defects, killing their performance.

But now a research team, led by engineers at the University of California, Berkeley, and Lawrence Berkeley National Laboratory, has found a simple way to fix these defects through the use of an organic superacid. The chemical treatment led to a dramatic 100-fold increase in the material's photoluminescence , a ratio describing the amount of light generated by the material versus the amount of energy put in. The greater the emission of light, the higher the quantum yield and the better the material quality.

The researchers enhanced the quantum yield for molybdenum disulfide, or MoS2, from less than 1 percent up to 100 percent by dipping the material into a superacid called bistriflimide, or TFSI.

Their findings, to be published in the Nov. 27 issue of Science, opens the door to the practical application of monolayer materials, such as MoS2, in optoelectronic devices and high-performance transistors. MoS2 is a mere seven-tenths of a nanometer thick. For comparison, a strand of human DNA is 2.5 nanometers in diameter.

Coming to a monitor near you: A defect-free, molecule-thick film
A MoS2 monolayer semiconductor shaped into a Cal logo. The image on the left shows the material before it was treated with superacid. On the right is the monolayer after treatment. The researchers were able to achieve two orders of magnitude improvement in emitted light with the superacid treatment. Credit: Image by Matin Amani

"Traditionally, the thinner the material, the more sensitive it is to defects," said principal investigator Ali Javey, UC Berkeley professor of electrical engineering and computer sciences and a faculty scientist at Berkeley Lab. "This study presents the first demonstration of an optoelectronically perfect monolayer, which previously had been unheard of in a material this thin."

The researchers looked to superacids because, by definition, they are solutions with a propensity to "give" protons, often in the form of hydrogen atoms, to other substances. This chemical reaction, called protonation, has the effect of filling in for the missing atoms at the site of defects as well as removing unwanted contaminants stuck on the surface, the researchers said.

Co-lead authors of the paper are UC Berkeley Ph.D. student Matin Amani, visiting Ph.D. student Der-Hsien Lien and postdoctoral fellow Daisuke Kiriya.

They noted that scientists have been pursuing monolayer semiconductors because of their low absorption of light and their ability to withstand twists, bends and other extreme forms of mechanical deformation, which can enable their use in transparent or flexible devices.

Ali Javey, UC Berkeley professor at the College of Engineering, and researchers in his lab have found a way to remove defects from atomically thin monolayer semiconductors. Shown, left to right, are Javey, Matin Amani, Der-Hsien Lien and Daisuke Kiriya. Credit: Hiroki Ota

MoS2, specifically, is characterized by molecular layers held together by van der Waals forces, a type of atomic bonding between each layer that is atomically sharp. An added benefit of having a material that is so thin is that it is highly electrically tunable. For applications such as LED displays, this feature may allow devices to be made where a single pixel could emit a wide range of colors rather than just one by varying the amount of voltage applied.

The lead authors added that the efficiency of an LED is directly related to the photoluminescence quantum yield so, in principle, one could develop high-performance LED displays that are transparent when powered off and flexible using the "perfect" optoelectronic monolayers produced in this study.

This treatment also has revolutionary potential for transistors. As devices in computer chips get smaller and thinner, defects play a bigger role in limiting their performance.

"The defect-free monolayers developed here could solve this problem in addition to allowing for new types of low-energy switches," said Javey.

Explore further: Scientists discover bulk material that exhibits monolayer behavior

More information: "Near-unity photoluminescence quantum yield in MoS2" Science, www.sciencemag.org/lookup/doi/10.1126/science.aad2114

Related Stories

Researchers build atomically thin gas and chemical sensors

February 19, 2015

The relatively recent discovery of graphene, a two-dimensional layered material with unusual and attractive electronic, optical and thermal properties, led scientists to search for other atomically thin materials with unique ...

Solving molybdenum disulfide's 'thin' problem

March 27, 2015

The promising new material molybdenum disulfide (MoS2) has an inherent issue that's steeped in irony. The material's greatest asset—its monolayer thickness—is also its biggest challenge.

Nanopores could take the salt out of seawater

November 11, 2015

University of Illinois engineers have found an energy-efficient material for removing salt from seawater that could provide a rebuttal to poet Samuel Taylor Coleridge's lament, "Water, water, every where, nor any drop to ...

Recommended for you

Nano-watermark sorts fakes from genuines

June 27, 2016

Nanoga, an EPFL-based startup, has developed a technique to put a nanoscopic watermark onto glass or ceramic. Products with this watermark, which is invisible to the naked eye and only shows up under ultraviolet light, are ...

Hybrid nanogenerator harvests hard-to-reach ocean energy

June 21, 2016

(Phys.org)—Energy from the ocean, or "blue energy," is arguably the most underexploited power source, according to researchers in a new study. Although the oceans contain enough energy to meet all of the world's energy ...

Nanoscientists develop the 'ultimate discovery tool'

June 23, 2016

The discovery power of the gene chip is coming to nanotechnology. A Northwestern University research team is developing a tool to rapidly test millions and perhaps even billions or more different nanoparticles at one time ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

DonGateley
not rated yet Nov 26, 2015
How large an area have they successfully applied this to?
vandelocht
not rated yet Nov 27, 2015
@DonGateley
Judging from the picture is an area covering about 100 sq micrometers. Not very impressive if you ask me but it looks like a good start

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.