Researchers model graphene/nanotube hybrids to test properties

September 15, 2015 by Mike Williams
Carbon nanotube pillars between sheets of graphene may create hybrid structures with a unique balance of strength, toughness and ductility throughout all three dimensions, according to Rice University scientists. Five, seven or eight-atom rings at the junctions can force the graphene to wrinkle. Credit: Illustration by Shuo Zhao and Lei Tao/Rice University

Rice University researchers discovered that putting nanotube pillars between sheets of graphene could create hybrid structures with a unique balance of strength, toughness and ductility throughout all three dimensions.

Carbon nanomaterials are common now as flat sheets, nanotubes and spheres, and they're being eyed for use as building blocks in hybrid structures with unique for electronics, heat transport and strength. The Rice team is laying a theoretical foundation for such structures by analyzing how the blocks' junctions influence the properties of the desired materials.

Rice materials scientist Rouzbeh Shahsavari and alumnus Navid Sakhavand calculated how various links, particularly between carbon nanotubes and graphene, would affect the final hybrid's properties in all directions. They found that introducing junctions would add extra flexibility while maintaining almost the same strength when compared with materials made of layered graphene.

Their results appear this week in the journal Carbon.

Carbon nanotubes are rolled-up arrays of perfect hexagons of atoms; graphene is a rolled-out of the same. Both are super-strong and excel at transmitting electrons and heat. But when the two are joined, the way the atoms are arranged can influence all those properties.

"Some labs are actively trying to make these materials or measure properties like the strength of single nanotubes and ," Shahsavari said. "But we want to see what happens and quantitatively predict the properties of hybrid versions of graphene and nanotubes. These hybrid structures impart new properties and functionality that are absent in their parent structures—graphene and nanotubes."

To that end, the lab assembled three-dimensional computer models of "pillared graphene nanostructures," akin to the boron-nitride structures modeled in a previous study to analyze heat transfer between layers.

"This time we were interested in a comprehensive understanding of the elastic and inelastic properties of 3-D carbon materials to test their mechanical strength and deformation mechanisms," Shahsavari said. "We compared our 3-D hybrid structures with the properties of 2-D stacked graphene sheets and 1-D carbon nanotubes."

Layered sheets of graphene keep their properties in-plane, but exhibit little stiffness or thermal conductance from sheet to sheet, he said. But pillared graphene models showed far better strength and stiffness and a 42 percent improvement in out-of-plane ductility, the ability to deform under stress without breaking. The latter allows pillared graphene to exhibit remarkable toughness along out-of-plane directions, a feature that is not possible in 2-D stacked graphene sheets or 1-D carbon nanotubes, Shahsavari said.

The researchers calculated how the atoms' inherent energies force hexagons to take on or lose atoms to neighboring rings, depending on how they join with their neighbors. By forcing five, seven or even eight-atom rings, they found they could gain a measure of control over the hybrid's mechanical properties. Turning the nanotubes in a way that forced wrinkles in the sheets added further flexibility and shear compliance, Shahsavari said.

When the material did fracture, the researchers found it far more likely for this to happen at the eight-member rings, where much of the strain gathers when stressed. That leads to the notion the hybrids can be tuned to fail under particular circumstances.

"This is the first time anyone has created such a comprehensive atomistic 'lens' to look at the junction-mediated properties of 3-D ," Shahsavari said. "We believe the principles can be applied to other low-dimensional materials such as boron nitride and molybdenum/tungsten or the combinations thereof."

Shahsavari is an assistant professor of civil and environmental engineering and of materials science and nanoengineering at Rice.

Explore further: 'White graphene' structures can take the heat

More information: "Junction configuration-induced mechanisms govern elastic and inelastic deformations in hybrid carbon nanomaterials," Carbon, Volume 95, December 2015, Pages 699-709, ISSN 0008-6223, dx.doi.org/10.1016/j.carbon.2015.08.106

Related Stories

3-D nanostructure could benefit nanoelectronics, gas storage

July 15, 2014

A three-dimensional porous nanostructure would have a balance of strength, toughness and ability to transfer heat that could benefit nanoelectronics, gas storage and composite materials that perform multiple functions, according ...

Recommended for you

Harnessing the possibilities of the nanoworld

September 30, 2016

Scientists have long suspected that the way materials behave on the nanoscale – that is when particles have dimensions of about 1–100 nanometres – is different from how they behave on any other scale. A new paper in ...

Creating new devices that emulate human biological synapses

September 29, 2016

Engineers at the University of Massachusetts Amherst are leading a research team that is developing a new type of nanodevice for computer microprocessors that can mimic the functioning of a biological synapse—the place ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

PPihkala
not rated yet Sep 20, 2015
I wonder how this kind of 3D matrix would perform as an electrode in a battery. Conductivity should be good and there should be enough space for ions to move.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.