Water heals a bioplastic

September 1, 2015 by A'ndrea Elyse Messer
Water heals a bioplastic
"What's unique about this plastic is the ability to stick itself back together with a drop of water," said Melik Demirel. Credit: Demirel Lab/Penn State

A drop of water self-heals a multiphase polymer derived from the genetic code of squid ring teeth, which may someday extend the life of medical implants, fiber-optic cables and other hard to repair in place objects, according to an international team of researchers.

"What's unique about this plastic is the ability to stick itself back together with a drop of water," said Melik Demirel, professor of engineering science and mechanics, Penn State. "There are other that are , but not with water."

Demirel and his team looked at the ring teeth of squid collected around the world—in the Mediterranean, Atlantic, near Hawaii, Argentina and the Sea of Japan—and found that proteins with self-healing properties are ubiquitous. However, as they note in a recent issue of Scientific Reports, "the yield of this proteinaceous material from natural sources is low (about 1 gram of squid ring teeth protein from 5 kilograms of squid) and the composition of native material varies between squid species."

So as not to deplete populations, and to have a uniform material, the researchers used biotechnology to create the proteins in bacteria. The polymer can then either be molded using heat or cast by solvent evaporation.

The two-part material is a copolymer consisting of an amorphous segment that is soft and a more structured molecular architecture. The structured portion consists of strands of amino acids connected by hydrogen bonds to form a twisted and/or pleated sheet. This part also provides strength for the polymer, but the amorphous segment provides the .

The video will load shortly
A video of squid ring teeth derived plastic being cut in two and self healing with water and pressure. Credit: Demirel Lab, Penn State

The researchers created a dog-bone shaped sample of the polymer and then cut it in half. Using warm water at about 113 degrees Fahrenheit—slightly warmer than body temperature—and a slight amount of pressure with a metal tool, the two halves reunited to reform the dog-bone shape. Strength tests showed that the material after healing was as strong as when originally created.

"If one of the under the ocean breaks, the only way to fix it is to replace it," said Demirel. "With this material, it would be possible to heal the cable and go on with operation, saving time and money.

"Maybe someday we could apply this approach to healing of wounds or other applications," he said. "It would be interesting in the long run to see if we could promote wound healing this way so that is where I'm going to focus now."

Explore further: Squid supplies blueprint for printable thermoplastics

Related Stories

A renewable bioplastic made from squid proteins

December 18, 2014

In the central Northern Pacific is an area that may be the size of Texas called the Great Pacific Garbage Patch. Made up of tons of floating plastic debris, the patch is killing seabirds and poisoning marine life in the North ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Nanotech wound healing in diabetes

August 11, 2015

People with diabetes mellitus often suffer from impaired wound healing. Now, scientists in Egypt have developed antibacterial nanofibres of cellulose acetate loaded with silver that could be used in a new type of dressing ...

Recommended for you

Why cryptophyte algae are really good at harvesting light

December 8, 2016

In an algae-eat-algae world, it's the single-celled photosynthetic organisms at the top (layer of the ocean) that absorb the most sunlight. Underneath, in the sublayers, are cryptophyte algae that must compete for photons ...

Chemical trickery corrals 'hyperactive' metal-oxide cluster

December 8, 2016

After decades of eluding researchers because of chemical instability, key metal-oxide clusters have been isolated in water, a significant advance for growing the clusters with the impeccable control over atoms that's required ...

Oxygen can wake up dormant bacteria for antibiotic attacks

December 8, 2016

Bacterial resistance does not come just through adaptation to antibiotics, sometimes the bacteria simply go to sleep. An international team of researchers is looking at compounds that attack bacteria's ability to go dormant ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.