Scientists see ripples of a particle-separating wave in primordial plasma

June 8, 2015
Off-center collisions of gold ions create a strong magnetic field and set up a series of effects that push positively charged particles to the poles of the football-shaped collision zone and negatively charged particles to the equator. Credit: Brookhaven National Laboratory

Scientists in the STAR collaboration at the Relativistic Heavy Ion Collider (RHIC), a particle accelerator exploring nuclear physics and the building blocks of matter at the U.S. Department of Energy's Brookhaven National Laboratory, have new evidence for what's called a "chiral magnetic wave" rippling through the soup of quark-gluon plasma created in RHIC's energetic particle smashups.

The presence of this wave is one of the consequences scientists were expecting to observe in the quark-gluon plasma—a state of matter that existed in the early universe when quarks and gluons, the building blocks of protons and neutrons, were free before becoming inextricably bound within those larger particles. The tentative discovery, if confirmed, would provide additional evidence that RHIC's collisions of energetic gold ions recreate nucleus-size blobs of the fiery plasma thousands of times each second. It would also provide circumstantial evidence in support of a separate, long-debated quantum phenomenon required for the wave's existence. The findings are described in a paper that will be highlighted as an Editors' Suggestion in Physical Review Letters.

To try to understand these results, let's take a look deep within the plasma to a seemingly surreal world where magnetic fields separate left- and right-"handed" particles, setting up waves that have differing effects on how negatively and positively charged particles flow.

"What we measure in our detector is the tendency of negatively charged particles to come out of the collisions around the 'equator' of the fireball, while positively charged particles are pushed to the poles," said STAR collaborator Hongwei Ke, a postdoctoral fellow at Brookhaven. But the reasons for this differential flow, he explained, begin when the gold ions collide.

The ions are gold atoms stripped of their electrons, leaving 79 positively charged protons in a naked nucleus. When these ions smash into one another even slightly off center, the whole mix of charged matter starts to swirl. That swirling positive charge sets up a powerful magnetic field perpendicular to the circulating mass of matter, Ke explained. Picture a spinning sphere with north and south poles.

Within that swirling mass, there are huge numbers of subatomic particles, including quarks and gluons at the early stage, and other particles at a later stage, created by the energy deposited in the collision zone. Many of those particles also spin as they move through the magnetic field. The direction of their spin relative to their direction of motion is a property called chirality, or handedness; a particle moving away from you spinning clockwise would be right-handed, while one spinning counterclockwise would be left-handed.

The STAR detector at the Relativistic Heavy Ion Collider tracks particles emerging from thousands of subatomic smashups per second. Credit: Brookhaven National Laboratory

According to Gang Wang, a STAR collaborator from the University of California at Los Angeles, if the numbers of particles and antiparticles are different, the magnetic field will affect these left- and right-handed particles differently, causing them to separate along the axis of the magnetic field according to their "chiral charge."

"This 'chiral separation' acts like a seed that, in turn, causes particles with different charges to separate," Gang said. "That triggers even more chiral separation, and more , and so on—with the two effects building on one another like a wave, hence the name 'chiral magnetic wave.' In the end, what you see is that these two effects together will push more negative particles into the equator and the positive particles to the poles."

To look for this effect, the STAR scientists measured the collective motion of certain positively and negatively charged particles produced in RHIC collisions. They found that the collective elliptic flow of the negatively charged particles—their tendency to flow out along the equator—was enhanced, while the elliptic flow of the positive particles was suppressed, resulting in a higher abundance of positive particles at the poles. Importantly, the difference in elliptic flow between positive and negative particles increased with the net charge density produced in RHIC collisions.

According to the STAR publication, this is exactly what is expected from calculations using the theory predicting the existence of the chiral magnetic wave. The authors note that the results hold out for all energies at which a quark-gluon plasma is believed to be created at RHIC, and that, so far, no other model can explain them.

The finding, says Aihong Tang, a STAR physicist from Brookhaven Lab, has a few important implications.

"First, seeing evidence for the chiral magnetic wave means the elements required to create the wave must also exist in the quark-gluon plasma. One of these is the chiral magnetic effect—the quantum physics phenomenon that causes the electric charge separation along the axis of the magnetic field—which has been a hotly debated topic in physics. Evidence of the wave is evidence that the chiral magnetic effect also exists." Tang said.

The Relativistic Heavy Ion Collider (RHIC), a particle accelerator exploring nuclear physics and the building blocks of matter at the US Department of Energy's Brookhaven National Laboratory. Credit: Brookhaven National Laboratory

The chiral magnetic effect is also related to another intriguing observation at RHIC of http://www.bnl.gov/newsroom/news.php?a=11073">more-localized charge separation within the quark-gluon plasma. So this new evidence of the wave provides circumstantial support for those earlier findings.

Finally, Tang pointed out that the process resulting in propagation of the chiral magnetic wave requires that "chiral symmetry"—the independent identities of left- and right-handed particles—be "restored."

"In the 'ground state' of quantum chromodynamics (QCD)—the theory that describes the fundamental interactions of quarks and gluons—chiral symmetry is broken, and left- and right-handed can transform into one another. So the chiral charge would be eliminated and you wouldn't see the propagation of the chiral magnetic wave," said nuclear theorist Dmitri Kharzeev, a physicist at Brookhaven and Stony Brook University. But QCD predicts that when quarks and gluons are deconfined, or set free from protons and neutrons as in a quark-gluon plasma, chiral symmetry is restored. So the observation of the chiral wave provides evidence for chiral symmetry restoration—a key signature that has been created.

"How does deconfinement restore the symmetry? This is one of the main things we want to solve," Kharzeev said. "We know from the numerical studies of QCD that deconfinement and restoration happen together, which suggests there is some deep relationship. We really want to understand that connection."

Brookhaven physicist Zhangbu Xu, spokesperson for the STAR collaboration, added, "To improve our ability to search for and understand the chiral effects, we'd like to compare collisions of nuclei that have the same mass number but different numbers of protons—and therefore, different amounts of positive charge (for example, Ruthenium, mass number 96 with 44 protons, and Zirconium, mass number 96 with 40 protons). That would allow us to vary the strength of the initial while keeping all other conditions essentially the same."

Explore further: Quark matter's connection with the Higgs

More information: "Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions" arxiv.org/abs/1504.02175

Related Stories

Quark matter's connection with the Higgs

August 27, 2012

(Phys.org)—You may think you've heard everything you need to know about the origin of mass. After all, scientists colliding protons at the Large Hadron Collider (LHC) in Europe recently presented stunning evidence strongly ...

First indirect evidence of so-far undetected strange baryons

August 19, 2014

(Phys.org) —New supercomputing calculations provide the first evidence that particles predicted by the theory of quark-gluon interactions but never before observed are being produced in heavy-ion collisions at the Relativistic ...

Infographic: Rhic cooks up a quantum tempest in a teacup

November 10, 2014

When particles collide inside Brookhaven Lab's Relativistic Heavy Ion Collider (RHIC), they melt at trillion-degree temperatures and form a friction-free "perfect" liquid. This quark-gluon plasma, composed of the liberated ...

Smashing polarized protons to uncover spin and other secrets

February 11, 2015

If you want to unravel the secrets of proton spin, put a "twist" in your colliding proton beams. This technique, tried and perfected at the Relativistic Heavy Ion Collider (RHIC)—a particle collider and U.S. Department ...

Recommended for you

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

DNA chip offers big possibilities in cell studies

August 25, 2016

A UT Dallas physicist has developed a novel technology that not only sheds light on basic cell biology, but also could aid in the development of more effective cancer treatments or early diagnosis of disease.

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...

Feeling the force between sand grains

August 24, 2016

For the first time, Lawrence Livermore National Laboratory (LLNL) researchers have measured how forces move through 3D granular materials, determining how this important class of materials might pack and behave in processes ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

TimLong2001
1 / 5 (1) Jun 08, 2015
Beta (+/-) pairs as the building blocks of nucleons doesn't require the (unobserved) gluons. The mass of the neutron of 1836 electron masses would reduce to 918 pairs and the proton mass, of 917 pairs with a shared beta (+), is 1835 electron masses. Thus, the mass AND charge difference between protons and neutrons is ONE ELECTRON. This QED representation seems more realistic.
TimLong2001
1 / 5 (1) Jun 08, 2015
(sorry for the double post -- the prinout was delayed the first time.)
shavera
not rated yet Jun 08, 2015
It isn't more realistic when you consider the tremendous wealth of observables beyond just mass that the quark model can explain.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.