Nature inspires first artificial molecular pump

May 19, 2015
A blueprint for an artificial molecular pump that acts to compartmentalize rings in a high-energy state on a polymethylene chain. Credit: Nature Nanotechnology (2015) doi:10.1038/nnano.2015.96

Using nature for inspiration, a team of Northwestern University scientists is the first to develop an entirely artificial molecular pump, in which molecules pump other molecules. This tiny machine is no small feat. The pump one day might be used to power other molecular machines, such as artificial muscles.

The new machine mimics the pumping mechanism of life-sustaining proteins that move around living cells to metabolize and store energy from food. For its food, the artificial draws power from chemical reactions, driving molecules step-by-step from a low-energy state to a high-energy state—far away from equilibrium.

While nature has had billions of years to perfect its complex , modern science is only beginning to scratch the surface of what might be possible in tomorrow's world.

"Our molecular pump is radical chemistry—an ingenious way of transferring energy from molecule to molecule, the way nature does," said Sir Fraser Stoddart, the senior author of the study. Stoddart is the Board of Trustees Professor of Chemistry in Northwestern's Weinberg College of Arts and Sciences.

"All living organisms, including humans, must continuously transport and redistribute molecules around their cells, using vital carrier proteins," he said. "We are trying to recreate the actions of these proteins using relatively simple small molecules we make in the laboratory."

Details of the artificial molecular pump were published May 18 by the journal Nature Nanotechnology.

Chuyang Cheng, a fourth-year graduate student in Stoddart's laboratory and first author of the paper, has spent his Ph.D. studies researching molecules that mimic nature's biochemical machinery. He first designed an artificial pump two years ago, but it required more than a year of testing prototypes before he found the ideal chemical structure.

"In some respects, we are asking the molecules to behave in a way that they would not do normally," Cheng said. "It is much like trying to push two magnets together. The ring-shaped molecules we work with repel one another under normal circumstances. The artificial pump is able to syphon off some of the energy that changes hands during a chemical reaction and uses it to push the rings together."

The tiny threads the rings around a nanoscopic chain—a sort of axle—and squeezes the rings together, with only a few nanometers separating them. At present, the artificial molecular pump is able to force only two rings together, but the researchers believe it won't be long before they can extend its operation to tens of rings and store more energy.

Stoddart's team has been researching for several years. A challenge they have faced for a long time is how to power their machines. This latest advance may allow them to make machines that perform tasks at the molecular level.

Compared to nature's system, the artificial pump is very simple, but it is a start, the researchers say. They have designed a novel system, using kinetic barriers, that allows molecules to flow "uphill" energetically.

"This is non-equilibrium chemistry, moving molecules far away from their minimum energy state, which is essential to life," said Paul R. McGonigal, an author of the study. "Conducting non-equilibrium chemistry in this way, with simple , is one of the major challenges for science in the 21st century."

Ultimately, they intend to use the energy stored in their pump to power and other molecular machines. The researchers also hope their design will inspire other chemists working in non-equilibrium chemistry.

"This is completely unlike the process of designing the machinery we are used to seeing in everyday life," Stoddart said. "In a way, one must learn to see things from the ' point of view, considering forces such as random thermal motion that one would never consider when building an agricultural water pump or any other mechanical device."

Explore further: When will artificial molecular machines start working for us?

More information: "An Artificial Molecular Pump."

Related Stories

When will artificial molecular machines start working for us?

November 25, 2011

Physicist Richard Feynman in his famous 1959 talk, "Plenty of Room at the Bottom," described the precise control at the atomic level promised by molecular machines of the future. More than 50 years later, synthetic molecular ...

Researchers find the accelerator for molecular machines

May 1, 2014

How hard can it be to make a wheel rotate in a machine? Very hard actually, when the wheel sits in one of those nano-small molecular machines that are predicted to be running our future machines. But before the molecular ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.