Chemists create new pathway to potential medicines

May 8, 2015

Dartmouth researchers have discovered a new chemical reaction that has the potential to facilitate the search for pharmaceutical drugs.

The findings appear in the Journal of the American Chemical Society.

Organic synthesis is a scientific discipline central to the drug discovery process that is focused on building new carbon-based that can affect biology—for example, targeting and destroying cancer cells. In the study, the authors describe a new chemical reaction that converts simple starting materials into architecturally complex molecules (a collection of atoms bonded to one another) called "decalins" in a single step. Decalins are carbon-based compounds containing two hexagon rings.

"The findings are noteworthy not only because this chemical reaction simplifies the laboratory preparation of such species, but also because our study reveals a unique mode of reactivity associated with metal-carbon bonds that are embedded in complex carbon-based structures. General species of the type studied here have previously been thought to be fleeting intermediates whose reactivity was difficult to control," says co-author Glenn Micalizio , a professor of chemistry. "An important part of this paper demonstrates our ability to reveal new reactivity patterns of these species, prompting them to engage in highly selective chemical transformations."

The findings, which are the latest to emerge from Micalizio's research focusing on developing a class of called "metallacycle-mediated cross-coupling," stand as among the most complex examples of this chemistry ever described. The term "metallacycle" refers to atoms bonded in a ring, with one of the atoms being a metal. The researchers have been aiming to control the assembly of organic structures that stepwise "encapsulate" a reactive metal center, followed by selective extrusion of the metal from the resulting organic structure. In the new study, the metal plays a central role in joining two molecules through a process that forges three carbon-carbon bonds in a highly selective fashion.

"This latest finding provides a concise and direct synthesis pathway that, due to the structure of the products delivered, will likely be quite valuable for the discovery and development of therapeutic agents," says Micalizio, whose work focuses on the design of organic chemical reaction methods and strategies to improve medicine and human health.

Explore further: Breaking benzene

More information: Synthesis of Highly Functionalized Decalins via Metallacycle-Mediated Cross-Coupling, J. Am. Chem. Soc., Just Accepted Manuscript. DOI: 10.1021/jacs.5b02107

Related Stories

Breaking benzene

August 27, 2014

Aromatic compounds are found widely in natural resources such as petroleum and biomass, and breaking the carbon-carbon bonds in these compounds plays an important role in the production of fuels and valuable chemicals from ...

Superatomic nickel core and unusual molecular reactivity

February 27, 2015

A superatom is a combination of two or more atoms that form a stable structural fragment and possess unique physical and chemical properties. Systems that contain superatoms open a number of possibilities for not only formation ...

Recommended for you

LiH mediates low-temperature ammonia synthesis

August 24, 2016

Nearly half of the world's population is fed by industrial N2 fixation, i. e., the Harbor-Bosch process. Although exergonic in nature, NH3 synthesis from N2 and H2 catalyzed by the fused Fe has to be conducted at elevated ...

Selecting the right house plant could improve indoor air

August 24, 2016

Indoor air pollution is an important environmental threat to human health, leading to symptoms of "sick building syndrome." But researchers report that surrounding oneself with certain house plants could combat the potentially ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.