More than a million stars are forming in a mysterious dusty gas cloud in a nearby galaxy

March 18, 2015
Hubble Space Telescope image of galaxy NGC 5253. Superimposed is the gas (fuzzy red to yellow) as seen by the Submillimeter Array. The brightest part of the image is Cloud D. Credit: Jean Turner

More than a million young stars are forming in a hot, dusty cloud of molecular gases in a tiny galaxy near our own, an international team of astronomers has discovered.

The star cluster is buried within a supernebula in a dwarf galaxy known as NGC 5253, in the constellation Centaurus. The cluster has one billion times the luminosity of our sun, but is invisible in ordinary light, hidden by its own hot gases.

"We are stardust, and this cluster is a factory of and soot," said Jean Turner, a professor of physics and astronomy in the UCLA College and lead author of the research, which is published March 19 in the journal Nature. "We are seeing the dust that the stars have created. Normally when we look at a star cluster, the stars long ago dispersed all their gas and dust, but in this cluster, we see the dust.

"I've been searching for the gas cloud that is forming the supernebula and its star cluster for years," she said. "Now we have detected it."

The amount of dust surrounding the stars is extraordinary—approximately 15,000 times the mass of our sun in elements such as carbon and oxygen.

"We were stunned," said Turner, who is chair of the department of physics and astronomy.

The cluster is about 3 million years old, which in astronomical terms, is remarkably young. It is likely to live for more than a billion years, she said.

The Milky Way has not formed gigantic star clusters for billions of years, Turner said. It is still forming new stars, but not in nearly such large numbers, she said. Some astronomers had believed that such giant star clusters could form only in the early universe.

The Milky Way has , but nothing comparable to this galaxy's Cloud D—see the bright white area in the photo—which houses the enormous star cluster enshrouded in thick gas and dust, Turner said.

How much of a gas cloud gets turned into stars varies in different parts of the universe. In the Milky Way, the rate for gas the size of Cloud D is less than 5 percent. In Cloud D, the rate is at least 10 times higher, and perhaps much more.

Turner and her colleagues conducted the research with the Submillimeter Array, a joint project of the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics, on Hawaii's Mauna Kea.

NGC 5253 has hundreds of large , including at least several that are young, the astronomers report. The most spectacular is found within Cloud D.

"We're catching this cluster at a special time," Turner said. "With a cluster this large, we would expect several thousand stars that would have become supernovae and exploded by now. We found no evidence of a supernova yet."

The cluster contains more than 7,000 massive "O" stars—the most luminous of all known stars, each a million times brighter than our sun.

NGC 5253 has approximately nine times as much dark matter as visible matter—a much higher rate than the inner parts of the Milky Way, Turner said.

In coming years, the cloud could be destroyed by stars that become supernovae, Turner said, "which would spin all of the gas and elements created by the stars into interstellar space."

Explore further: A star cluster in the wake of Carina

More information: Highly efficient star formation in NGC 5253 possibly from stream-fed accretion, dx.doi.org/10.1038/nature14218

Related Stories

A star cluster in the wake of Carina

May 21, 2014

This colorful new image from the MPG/ESO 2.2-meter telescope at ESO's La Silla Observatory in Chile shows the star cluster NGC 3590. These stars shine brightly in front of a dramatic landscape of dark patches of dust and ...

Lives and deaths of sibling stars

July 23, 2014

This beautiful star cluster, NGC 3293, is found 8000 light-years from Earth in the constellation of Carina (The Keel). This cluster was first spotted by the French astronomer Nicolas-Louis de Lacaille in 1751, during his ...

The answer is blowing in the intergalactic wind

November 13, 2014

Astronomers from the University of Toronto and the University of Arizona have provided the first direct evidence that an intergalactic "wind" is stripping galaxies of star-forming gas as they fall into clusters of galaxies. ...

Stars found forming at Milky Way's outer edge

February 27, 2015

Brazilian astronomers said Friday they had found two star clusters forming in a remote part of our Milky Way galaxy where such a thing was previously thought impossible.

A grand extravaganza of new stars

March 11, 2015

This dramatic landscape in the southern constellation of Ara (The Altar) is a treasure trove of celestial objects. Star clusters, emission nebulae and active star-forming regions are just some of the riches observed in this ...

Recommended for you

WISE, Fermi missions reveal a surprising blazar connection

August 24, 2016

Astronomers studying distant galaxies powered by monster black holes have uncovered an unexpected link between two very different wavelengths of the light they emit, the mid-infrared and gamma rays. The discovery, which was ...

Rocky planet found orbiting habitable zone of nearest star

August 24, 2016

An international team of astronomers including Carnegie's Paul Butler has found clear evidence of a planet orbiting Proxima Centauri, the closest star to our Solar System. The new world, designated Proxima b, orbits its cool ...

Test for damp ground at Mars streaks finds none

August 24, 2016

Seasonal dark streaks on Mars that have become one of the hottest topics in interplanetary research don't hold much water, according to the latest findings from a NASA spacecraft orbiting Mars.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

rossim22
1 / 5 (3) Mar 18, 2015
*Waits for dark matter pseudoscience to be thrown into the mix*
Tuxford
1 / 5 (3) Mar 19, 2015
The amount of dust surrounding the stars is extraordinary—approximately 15,000 times the mass of our sun in elements such as carbon and oxygen.
"We were stunned," said Turner, who is chair of the department of physics and astronomy.

"We're catching this cluster at a special time," Turner said. "With a cluster this large, we would expect several thousand stars that would have become supernovae and exploded by now. We found no evidence of a supernova yet."


Again, more metals in areas where they can't be according to merger maniacs. Most all galaxies will be found to have core stars that are at least intermittently active, spewing new matter therefrom, including metals.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.