Mapping snake venom variety reveals unexpected evolutionary pattern

January 8, 2015
An eastern diamondback rattlesnake from Sapelo Island, GA is delivering venom for proteomic analysis. Credit: Joseph Pfaller

Venom from an eastern diamondback rattlesnake in the Everglades is distinct from the cocktail of toxins delivered by the same species in the Florida panhandle area, some 500 miles away. But no matter where you go in the Southeastern United States, the venom of the eastern coral snake is always the same. The results of a large-scale survey of venom variation in the two snake species, published January 8, 2015 in the journal Genetics, challenge common assumptions in venom evolution research, provide crucial information for rattlesnake conservation, and will help coral snake antivenom development.

Each venomous snake species produces a unique venom, a mixture of around 50-200 toxic proteins and protein fragments that co-evolve with the typical prey of the snake, such as the smaller reptiles eaten by the eastern coral snake or the rodents preferred by rattlesnakes. In this cycle of evolutionary attack and counterattack, any genetic variants that enhance venom resistance tend to spread through the prey population, prompting tweaks to the snake venom recipe that restore its effectiveness.

The result should be distinctive local co-adaptations between predator and prey, as well as considerable regional diversity in the types and amounts of the different venom proteins. But when Darin Rokyta (Florida State University) and his colleagues collected and profiled venom from eastern coral snakes at many sites within Florida, they found no variation at all. The mix of proteins in coral snake venom from one part of the state was indistinguishable from that collected anywhere else. In contrast, eastern diamondbacks, which live in the same parts of the country as the coral snakes, produce venom with different ratios of toxic proteins in nearly every sub-population across their range. For example, two venom components, including one known to cause paralysis in prey, are found at high levels in the northernmost populations, and were completely absent in the snakes from Caladesi Island, near Tampa.

Adult eastern diamondback rattlesnake from north Florida. Credit: Kenny Wray

"We were shocked," Rokyta said. "This is the first time anyone has looked at venom variation at this scale, and everybody has assumed that the co-evolutionary arms race would cause local populations to diverge quickly."

Rokyta says there could be several explanations for the lack of variation in eastern coral . For example, a small population of the species might have recently expanded and taken over the entire range, displacing other populations and reducing genetic diversity. Or it could reflect a difference in co-evolutionary dynamics between the species and its typically reptilian prey, compared to the small mammals preferred by rattlesnakes. The team is now using genetic clues to the population histories of each species to investigate possible explanations.

The results of the study will be helpful to researchers developing eastern coral snake antivenom. Making an antivenom requires samples of venom, but if the mix varies substantially from place to place, this will affect the drug's effectiveness and reliability. For this species, sampling from many populations should not be necessary. "This tells us it doesn't matter where we catch these relatively elusive snakes; we can stick to using those locations where they're easy to find," Rokyta said.

Adult eastern coralsnake from the central panhandle of Florida. Credit: Kenny Wray

The variation between eastern diamondback populations could provide crucial information to authorities managing the conservation of this species, which is in decline and under consideration for listing as threatened under the Endangered Species Act. Eastern diamondback rattlesnake declines are thought to have been caused by habitat loss compounded by hunting and persecution by humans. The data from this study can be used for population management, to ensure the full range of venom subtypes are conserved for the long-term viability of the species.

"The received wisdom was that venoms are rapidly-evolving, but now we know that's not necessarily the case." said Mark Johnston, Editor-in-Chief of GENETICS. "Clearly, evolution in these two snake has been shaped by different forces. The next challenge is to understand why."

Explore further: Study looks at venom variation in closely related snake species

More information: Contrasting Modes and Tempos of Venom Expression Evolution in Two Snake Species, Mark J. Margres, James J. McGivern, Margaret Seavy, Kenneth P. Wray, Jack Facente, and Darin R. Rokyta, Genetics January 2015, 199:165-176 DOI: 10.1534/genetics.114.172437http://www.genetics.org/content/199/1/165.full

Related Stories

How the snake got its venom

August 11, 2014

The venom of advanced snakes is a mixture of dozens of different proteins and is an example of an evolutionary innovation – a novel trait that has arisen in a particular animal group and which has contributed to their success. ...

Snake venom collected decades ago remains as potent as ever

February 19, 2014

Snake venom collected decades ago is as potent as ever, an international team of researchers has concluded. So we may be able to use it for research rather than collecting more in the field - good news for scientists and ...

Team proposes new model for snake venom evolution

December 8, 2014

Technology that can map out the genes at work in a snake or lizard's mouth has, in many cases, changed the way scientists define an animal as venomous. If oral glands show expression of some of the 20 gene families associated ...

The rapid evolution of cobra venom

December 3, 2013

A new study has provided the first comprehensive insight into how snake venom evolved into the sophisticated cocktail of different proteins it is today.

Recommended for you

Protein disrupts infectious biofilms

December 8, 2016

Many infectious pathogens are difficult to treat because they develop into biofilms, layers of metabolically active but slowly growing bacteria embedded in a protective layer of slime, which are inherently more resistant ...

The song of silence

December 8, 2016

Like humans learning to speak, juvenile birds learn to sing by mimicking vocalizations of adults of the same species during development. Juvenile birds preferentially learn the song of their own species, even in noisy environments ...

An anti-CRISPR for gene editing

December 8, 2016

Researchers have discovered a way to program cells to inhibit CRISPR-Cas9 activity. "Anti-CRISPR" proteins had previously been isolated from viruses that infect bacteria, but now University of Toronto and University of Massachusetts ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.