Novel inorganic material emitting laser light in solution discovered

January 13, 2015
Laser solution. Credit: Spanish National Research Council

A team of scientists from the Spanish National Research Council and the Academy of Sciences of the Czech Republic has discovered a new type of laser material based on an inorganic molecule—a complex of boron and hydrogen and no carbon atoms—that emits laser light in solution.

The work, published in Nature Communications, demonstrates that the new material presents efficient and degradation-resistant laser emission in the blue, a spectral region of interest in applications such as spectroscopy or materials processing, among others.

The first laser was developed in 1960 and 55 years later, there is still a search for new materials that emit efficient, tuneable and stable blue , that are, in addition, cost-effective, and easily produced and processed. "Nowadays there exists a diverse range of commercial materials that are close to fulfilling those requirements, but they present some practical inconveniences. In our study we present a solution that seeks to contribute to overcome these limitations," clarifies Inmaculada García-Moreno, CSIC researcher at the Institute of Physical Chemistry Rocasolano.

New uses for a known compound

Despite not being a novel material, this is the first time that the boron hydrides, or boranes, have been used to obtain laser light. "We have concentrated our work on solutions of anti-B18H22, a cluster-like molecule with architecture resembling that of a split soccer ball," says Michael Londesborough, borane specialist from the Institute of Inorganic Chemistry. Of all the laser materials known so far, boranes are, in terms of structure and properties, most similar to organic dyes, which emit laser light in an efficient and tuneable manner (very high energy with controllable colour), but that are easily degraded, necessitating the frequent renewal of the laser medium.

The new borane shows a resistance against degradation that is superior or similar to many of the commercially available state-of-the-art blue laser dyes. This high resistance against degradation means that the number of times the liquid medium has to be replaced is reduced, helping to solve issues with costs, occupational hazards and environmental impact due to handling of solvents, which are toxic and flammable.

The team of researchers is planning to synthesize new boranes emitting at other wavelengths (colours), as this would open the doors to, for example, their possible application in dermatology (Tattoo, scar or acne removal, as well as treatments of vascular lesions, to name but a few potential applications). "There is still plenty of work to be carried out before these compounds can reach the commercial shelves, but the scientific relevance of this discovery represents a milestone in the history of lasers, since there are not many occasions in which a new family of laser materials is unveiled," concludes Luis Cerdán, a CSIC researcher at the Institute of Physical Chemistry Rocasolano. Dr. Michael Londesborough agrees, "We are highly excited by this discovery. The boranes, with their unique molecular structures and high photostabilities, present a new and previously untapped resource for technology."

Explore further: Researchers design plasmonic cavity-free nanolaser

Related Stories

Researchers design plasmonic cavity-free nanolaser

September 22, 2014

(Phys.org) —A team of researchers at Imperial College in London has designed a new type of laser, one that could be made much smaller than today's models because it would be cavity-free. In their paper published in the ...

Creating bright X-ray pulses in the laser lab

November 11, 2014

To create X-rays—short wave radiation—scientists at TU Vienna start out with very long wavelengths—infrared laser. Long wavelength laser pulses rip atoms out of metal and accelerate them, which leads to emission of ...

Laser technology aids CO2 storage capabilities

December 23, 2014

DOE's National Energy Technology Laboratory is attracting private industry attention and winning innovation awards for harnessing the power of lasers to monitor the safe and permanent underground storage of CO2 resulting ...

Nanoparticle Scattering Improves Laser Performance

June 4, 2009

(PhysOrg.com) -- “Light scattering” and “optical performance” are two concepts that usually head in opposite directions, but they have recently been shown to walk happily hand-in-hand. The results are impressive laser ...

NIST launches new calibration service for high-power lasers

October 30, 2014

The National Institute of Standards and Technology (NIST) has launched a new calibration service for high-power lasers of the sort used by manufacturers for applications such as cutting and welding metals, as well as by the ...

Recommended for you

Fast, efficient sperm tails inspire nanobiotechnology

December 2, 2016

Just like workers in a factory, enzymes can create a final product more efficiently if they are stuck together in one place and pass the raw material from enzyme to enzyme, assembly line-style. That's according to scientists ...

Biodegradable polymers made by chemical vapor deposition

December 1, 2016

Polymerization by chemical vapor deposition (CVD) is a simple method for modifying surfaces by which topologically challenging substrates can be evenly coated with polymers. In the journal Angewandte Chemie, researchers have ...

Controlling chain conformations to enhance electronic devices

December 1, 2016

Controlling the way fluorinated polymer chains twist and turn may enable fast and flexible electrical circuits, according to collaborative research conducted at Penn State. The findings may offer substantial impact on the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.