Researchers one step closer to cocaine antidote

January 13, 2015

Researchers at the University of Copenhagen have gained new insight into the mechanism behind a protein dopamine transporter that could help in the development of future medical treatment against cocaine addiction.

"If we have a better understanding of the function we will become more proficient in developing an antidote against ," says Associate Professor Claus Juul Loland from the department of Neuroscience and Pharmacology. Currently there is no available for addiction.

The results have been published in the Journal of Biological Chemistry.

Discovery of crucial mechanism

Dopamine is a signaling molecule in the brain which is involved in our sensation of reward, motivation and, thus, addiction. The dopamine transporter functions as a molecular vacuum cleaner removing the released dopamine, thereby controlling its signaling. The researcher's discovery is an interaction, a so-called gate, which controls access for dopamine to its binding site in the protein. "We found two amino acids in the proteins that dynamically breaks and forms an interaction. The dynamic is therefore crucial for the transport process," says Loland.

Besides controlling function, the constellation of the two is important for the overall structure of the protein: "The breakage of the interaction could therefore be a signature for the binding of cocaine and cocaine-like drugs," he adds.

Towards a cocaine antidote

Cocaine acts as an inhibitor of the dopamine transporter but the researchers found other inhibitors that even though they did bind to the dopamine transporter with the same strength as cocaine, did not produce the same stimulatory response when administered to rats.

By using molecular pharmacology and biochemistry, they were able to characterize dopamine transporter mutants and how their function deviated from the non-mutated transporter. In contrast to cocaine, the non-stimulatory - or atypical - drugs seem to bind a more closed form of the dopamine transporter.

If the researchers can figure out - on the molecular level - why they are different then they will be better prepared for the targeted development of non-stimulatory inhibitors that will prohibit the subsequent binding of cocaine and help them towards producing an antidote. "Our objective here is that cocaine will not then work anymore as the antidote will inhibit the stimulatory response of taking this drug," concludes Loland.

Explore further: The dopamine transporter: Researchers study a common link between addiction and neurological disease

Related Stories

Cocaine vaccine passes key testing hurdle

May 10, 2013

Researchers at Weill Cornell Medical College have successfully tested their novel anti-cocaine vaccine in primates, bringing them closer to launching human clinical trials. Their study, published online by the journal Neuropsychopharmacology, ...

Cocaine's effects on brain metabolism may contribute to abuse

February 18, 2008

Many studies on cocaine addiction - and attempts to block its addictiveness - have focused on dopamine transporters, proteins that reabsorb the brain's "reward" chemical once its signal is sent. Since cocaine blocks dopamine ...

Recommended for you

Why cryptophyte algae are really good at harvesting light

December 8, 2016

In an algae-eat-algae world, it's the single-celled photosynthetic organisms at the top (layer of the ocean) that absorb the most sunlight. Underneath, in the sublayers, are cryptophyte algae that must compete for photons ...

Oxygen can wake up dormant bacteria for antibiotic attacks

December 8, 2016

Bacterial resistance does not come just through adaptation to antibiotics, sometimes the bacteria simply go to sleep. An international team of researchers is looking at compounds that attack bacteria's ability to go dormant ...

Chemical trickery corrals 'hyperactive' metal-oxide cluster

December 8, 2016

After decades of eluding researchers because of chemical instability, key metal-oxide clusters have been isolated in water, a significant advance for growing the clusters with the impeccable control over atoms that's required ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.