'Fibonacci quasiparticle' could form basis of future quantum computers

December 15, 2014 by Lisa Zyga feature
Illustration of “braids,” i.e., the trajectories of anyon quasiparticles through time as they move around each other. Braiding patterns can form the logic gates in a quantum computer, and have the advantage of being more stable than trapped particles. Credit: Abolhassan Vaezi

(Phys.org)—Topological quantum computing (TQC) is a newer type of quantum computing that uses "braids" of particle tracks, rather than actual particles such as ions and electrons, as the qubits to implement computations. Using braids has one important advantage: it makes TQCs practically immune to the small perturbations in the environment that cause decoherence in particle-based qubits and often lead to high error rates.

Ever since TQC was first proposed in 1997, experimentally realizing the appropriate braids has been extremely difficult. For one thing, the braids are formed not by the trajectories of ordinary particles, but by the trajectories of exotic quasiparticles (particle-like excitations) called anyons. Also, movements of the anyons must be non-Abelian, a property similar to the non-commutative property in which changing the order of the anyons' movements changes their final tracks. In most proposals of TQC so far, the non-Abelian statistics of the anyons has not been powerful enough, even in theory, for universal TQC.

Now in a new study published in Physical Review Letters, physicists Abolhassan Vaezi at Cornell University and Maissam Barkeshli at Microsoft's research lab Station Q have theoretically shown that anyons tunneling in a double-layer system can transition to an exotic non-Abelian state that contains "Fibonacci" anyons that are powerful enough for universal TQC.

"Our work suggests that some existing experimental setups are rich enough to yield a phase capable of performing 'universal' TQC, i.e., all of the required logical gates for the performance of a quantum computer can be made through the braiding of anyons only," Vaezi told Phys.org. "Since braiding is a topological operation and does not perturb the low-energy physics, the resulting quantum computer is fault-tolerant."

The physicists' work builds on previous research that has shown that anyons can arise due to the fractional quantum Hall effect. To realize this effect, a 2-D electron gas is sandwiched between two flat semiconductor plates. When cooled to temperatures near absolute zero and exposed to strong magnetic fields, excitations form in the 2-D electron gas and give rise to anyons. So far, only Abelian anyons have been detected in fractional quantum Hall systems, but studies suggest that non-Abelian anyons might also be realized.

In the new study, the scientists considered a double-layer fractional quantum Hall system in which anyons can tunnel between the two layers. When modeling this system on a torus, the scientists showed that sufficiently large tunneling drives the evolution of six ground states that correspond to six topologically distinct types of quasiparticles, one of which is the Fibonacci anyon.

Vaezi explains that the Fibonacci anyon is related to the famous Fibonacci sequence (where a number in the sequence is the sum of the previous two numbers) as well as the golden ratio, 1.617… (which is approximately the ratio of any number in the Fibonacci sequence to the previous number). These mathematical patterns arise in the Fibonacci anyon because of its quantum properties, particularly those related to the so-called fusion rules that govern particle spins.

"The Fibonacci anyon is a non-Abelian anyon whose quantum dimension is the golden ratio (1.617...), and is the simplest anyon capable of performing universal quantum computation," Vaezi explained. "Using the fusion rule of Fibonacci anyons, it can be shown that the degeneracy of the ground state in the presence of n well-separated Fibonacci anyons on a sphere is the nth number in the Fibonacci sequence."

So what makes the Fibonacci anyon so attractive for TQC? The answer lies in its braiding statistics, or the way that these quasiparticles move around each other, creating braids and knots of tracks. Three or four Fibonacci anyons may correspond to a single qubit, and their braiding statistics corresponds to single-qubit gates. Building multiple-qubit gates requires braiding multiple qubits, often in intricate ways.

Here the physicists explain that another way to view this process is by looking at quasiparticles as domain walls that separate different ground state patterns of electrons. Different quasiparticles have different electric charges, so they separate different electron patterns. From this perspective, the Fibonacci anyon is appealing due to the particular ground state patterns it separates.

The physicists show that their finding that interlayer tunneling can result in Fibonacci anyons is well-supported by a variety of distinct methods. Further, the researchers raise the possibility that these Fibonacci anyons may have already been realized in past experiments on double-layer quantum Hall systems, although these experiments were not specifically looking for them. This is one area that they hope to investigate in the future.

"To test our prediction, we are numerically studying bilayer quantum Hall states with a number of interlayer interactions and searching for non-Abelian phases and, in particular, Fibonacci anyons in the case of the 2/3 state," Vaezi said. "We are also working on various experimental aspects of our proposal and potential signatures of the Fibonacci anyons."

Explore further: Quantum computing with braids in flatland

More information: Abolhassan Vaezi and Maissam Barkeshli. "Fibonacci Anyons From Abelian Bilayer Quantum Hall States." Physical Review Letters. DOI: 10.1103/PhysRevLett.113.236804
arXiv:1403.3383 [cond-mat.str-el]

Corrected: 3:30pm EST, 12/15/2014: Thanks to El_Nose.

Related Stories

Quantum computing with braids in flatland

November 1, 2010

Exotic anyon quasiparticles trapped in two dimensional sheets can entangle into braided structures that are less susceptible to the disturbances that disrupt individual quasiparticles in quantum computations.

From pencil marks to quantum computers

July 3, 2014

Pick up a pencil. Make a mark on a piece of paper. Congratulations: you are doing cutting-edge condensed matter physics. You might even be making the first mark on the road to quantum computers, according to new Perimeter ...

New paths into the world of quasiparticles

July 9, 2014

Quasiparticles can be used to explain physical phenomena in solid bodies even though they are not actual physical particles. Physicists in Innsbruck have now realized quasiparticles in a quantum system and observed quantum ...

Exotic state of matter propels quantum computing theory

July 23, 2014

So far it exists mainly in theory, but if invented, the large-scale quantum computer would change computing forever. Rather than the classical data-encoding method using binary digits, a quantum computer would process information ...

Recommended for you

Electrons at the speed limit

August 26, 2016

Electronic components have become faster and faster over the years, thus making powerful computers and other technologies possible. Researchers at ETH Zurich have now investigated how fast electrons can ultimately be controlled ...

A new study looks for the cortical conscious network

August 26, 2016

New research published in the New Journal of Physics tries to decompose the structural layers of the cortical network to different hierarchies enabling to identify the network's nucleus, from which our consciousness could ...

More to rainbows than meets the eye

August 25, 2016

In-depth review charts the scientific understanding of rainbows and highlights the many practical applications of this fascinating interaction between light, liquid and gas.


Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Dec 15, 2014
could have sworn non-Abelian meant non-commutative - as in not similar but the exact opposite of the meaning of commutative.

a+b = b+a ( commutative )
ab = ba ( commutative )

quaternions group - non-Abelian
matrix multiplication - non-Abelian

Also, movements of the anyons must be non-Abelian, a property similar to the commutative property in which changing the order of their movements must not change their final tracks.

the words :

changing the order of their movements must not change their final tracks

if you remove commutative the sentence make mathematical sense.
5 / 5 (2) Dec 15, 2014
If my memory from 20 years ago is viable, an anyon is a mixture of fermion and boson. Therefore it's abilities to commute are mutable and subject the conditions of the experiment. The article does not expound this crucial property which will probably confuse most readers
5 / 5 (3) Dec 15, 2014
Did not understand this at all...
Dec 15, 2014
This comment has been removed by a moderator.
Lex Talonis
1 / 5 (1) Dec 16, 2014
Yeah. yeah, yeah... "one day could"

$250, 500W, on the desk, with a 1000 Ghz CPU with a terrorbite of RAM, running 1000 full capability work stations..

And of course, running Linux.

not rated yet Dec 17, 2014
Could someone be so kind as to link me to something that would help me understand this better? It's frustrating to finally run into something so intriguing and have it be beyond what I understand.

I understand the parts relating to the Fibonacci sequence and how it relates to phi, but everything else is just noise to me.
not rated yet Jan 04, 2015
Nice, complex article. With boosted performance of quantum computing, constructed universe simulations will eventually be barely discernible from our own universe. Interesting work that talks about this, "The Evolution of Simulated Universes". We live in fascinating times...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.