Thermoset materials acquire thermoplastic properties with the aid of triazolinediones

September 3, 2014
Some very fast click reactions of triazolinediones can be reversed and the resulting reagents can be used in another click reaction

At Ghent University (Belgium), a new type of so-called 'click' chemistry has been introduced. Like with most of click chemistry, it is based on a long-known efficient chemical reaction, which was now also found to be very practical for diverse and demanding applications. In particular, the unique reactivity of the studied 1,2,4-triazoline-3,5-dione (TAD) reagents has been harnessed to reversibly crosslink polyurethanes, or almost any other polymer matrix. At higher temperatures the TAD-induced crosslinks can temporarily open up, giving the thermoset the ability to be reshaped or even extruded like a typical thermoplastic polymer. This is reported in the current issue of Nature Chemistry, in a joint paper by three Ghent research groups led by Filip Du Prez, Veronique Van Speybroeck and Johan Winne.

The TAD reagents used in these new click reactions are quite stable compounds in bulk, but react almost instantaneously with electron rich unsaturated organic compounds. These preferred and orthogonal reaction partners can be easily implemented in polymer chains, resulting in very straightforward macromolecular linking and functionalisation. The TAD-reagents can be clicked to these reaction partners at room temperature without the aid of any catalyst in an almost instantaneous and air- and moisture insensitive manner. In most cases, this 'dummy proof/sure thing'-reaction will lead to the creation of an irreversible chemical bond. But when the TAD-reaction partner is part of an indole group, a temporary 'unclick reaction' can happen at temperatures around 120°C, releasing the original TAD reagent, which can then click to another partner.

With this TAD-based chemistry, a series of click reactions can thus be performed with alternating reaction partners. The reaction sequence can even be 'programmed' by choosing suitable alternative substrates. This is a new concept for the field, which was named a 'transclick' reaction by the Ghent researchers.

The key feature of the TAD reagents, which enables these new 'dynamic' applications, is the remarkable reaction kinetics. The energy barriers that are associated with the bond-forming and –breaking steps are very low. This has been verified by advanced calculations. The usual way to 'make a reaction click' is to make sure it is a very energetically favorable reaction. This implies that the backward reaction is highly unfavorable, and thus not feasible. "In our search for a suitable reaction partner for ultrafast reacting TADs, all we needed to do was make sure that the reaction was favorable enough to be a true click reaction under ambient conditions, while retaining the ability to reverse the process at a reasonable temperature," the researchers explain.

What results is a very user-friendly chemical system for performing click reactions. This fact can be further appreciated by another useful feature of the process: TAD molecules are bright red compounds, which are rendered completely colorless after reaction, giving the user an immediate visual feedback. Additionally, the fact that most indole and TAD molecules can be synthesized from bulk chemicals and thus on a large scale, makes this a very interesting platform for industrial partners. The unique reactivity of TAD also opens up possibilities to functionalise or cross-link simple but unreactive raw materials such as natural plant oils. "This is the first time our research group has been spontaneously contacted by several (chemical) companies, interested in performing joint research on one particular type of chemistry for so many different types of applications", Prof. Du Prez clarifies.

Explore further: Clicking synthetic and biological molecules together

More information: "Triazolinediones enable ultrafast and reversible click chemistry for the design of dynamic polymer systems." Stijn Billiet,et al.Nature Chemistry 6, 815–821 (2014) DOI: 10.1038/nchem.2023. Received 16 February 2014 Accepted 26 June 2014 Published online 11 August 2014 Corrected online 11 August 2014

Related Stories

Clicking synthetic and biological molecules together

February 19, 2008

Dutch researcher Joost Opsteen has developed a method to click polymers together in a controlled manner. Using this method, he can even attach proteins to nanoballs. For instance, this approach could be used to transport ...

Chemists uncover powerful new click chemistry reactivity

August 14, 2014

Chemists led by Nobel laureate K. Barry Sharpless at The Scripps Research Institute (TSRI) have used his click chemistry to uncover unprecedented, powerful reactivity for making new drugs, diagnostics, plastics, smart materials ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.