Team develops new, inexpensive method for understanding earthquake topography

Sep 03, 2014
A schematic illustration of three methods of producing high-resolution digital topography. Credit: K. Johnson et al. and Geosphere.

Using high-resolution topography models not available in the past, geologists can greatly enrich their research. However, current methods of acquisition are costly and require trained personnel with high-tech, cumbersome equipment. In light of this, Kendra Johnson and colleagues have developed a new system that takes advantage of affordable, user-friendly equipment and software to produce topography data over small, sparsely vegetated sites at comparable (or better) resolution and accuracy to standard methods.

Their workflow is based on structure from motion (SfM), which uses overlapping photographs of a scene to produce a 3-D model that represents the shape and scale of the terrain. To acquire the photos, Johnson and attached a camera programmed to take time-lapse photos to a helium balloon or small, remote-controlled glider. They augmented the aerial data by recording a few GPS points of ground features that would be easily recognized in the photographs.

Using a software program called Agisoft Photoscan, they combined the photographs and GPS data to produce a robust topographic model.

Johnson and colleagues note that this SfM workflow can be used for many geologic applications. In this study for Geosphere, Johnson and colleagues focused on its potential in studying active faults that pose an .

They targeted two sites in southern California, each of which has existing data collected using well-established, laser-scanning methods.

The first site covers a short segment of the southern San Andreas fault that historically has not had a large earthquake; however, the ground surface reveals evidence of prehistoric ruptures that help estimate the size and frequency of earthquakes on this part of the fault. The team notes that this evidence is more easily quantified using high-resolution topography data than by geologists working in the field.

The second site covers part of the surface rupture formed during the 1992 Landers earthquake (near Palm Springs, California, USA). Johnson and colleagues chose this site to test the capability of their workflow as part of the scientific response that immediately follows an earthquake.

At each site, they compared their SfM data to the existing laser scanner data and found that the values closely matched. Johnson and colleagues conclude that their new SfM workflow produces topography data at sufficient quality for use in earthquake research.

Explore further: Estimating earthquake frequency and patterns in the Puget Lowland

More information: Rapid mapping of ultra-fine fault zone topography with structure from motion Kendra Johnson et al., Dept. of Geophysics, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, USA. Posted online 29 Aug. 2014; http://dx.doi.org/10.1130/GES01017.1.

add to favorites email to friend print save as pdf

Related Stories

New satellite maps out Napa Valley earthquake

Sep 02, 2014

Scientists have used a new Earth-observation satellite called Sentinel-1A to map the ground movements caused by the earthquake that shook up California's wine-producing Napa Valley on 24 August 2014.

Topography Reflects Baja Quake Site's Complex Geology

Apr 06, 2010

(PhysOrg.com) -- The topography surrounding the Laguna Salada fault in the Mexican state of Baja, California, is clearly shown in this combined radar image and topographic view (above) generated with data ...

Recommended for you

Strong quake hits east Indonesia; no tsunami threat

4 hours ago

A strong earthquake struck off the coast of eastern Indonesia on Sunday evening, but there were no immediate reports of injuries or damage, and authorities said there was no threat of a tsunami.

Scientists make strides in tsunami warning since 2004

Dec 19, 2014

The 2004 tsunami led to greater global cooperation and improved techniques for detecting waves that could reach faraway shores, even though scientists still cannot predict when an earthquake will strike.

Trade winds ventilate the tropical oceans

Dec 19, 2014

Long-term observations indicate that the oxygen minimum zones in the tropical oceans have expanded in recent decades. The reason is still unknown. Now scientists at the GEOMAR Helmholtz Centre for Ocean Research ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.