Scientists sequence complete genome of E. coli strain responsible for food poisoning

Sep 01, 2014 by Catherine Hockmuth
UC San Diego bioengineers have completed the genome sequencing of a particularly harmful strain of E. coli that has been tied to outbreaks of food poisoning. The circular map shows the completed sequence with lighter color regions representing gaps in a 2001 sequencing of the strain that have now been completed with current technology. Credit: The Systems Biology Research Group at UC San Diego.

(Phys.org) —Researchers at the University of California, San Diego have produced the first complete genome sequencing of a strain of E. coli that is a common cause of outbreaks of food poisoning in the United States. Although the E. coli strain EDL933 was first isolated in the 1980s, it gained national attention in 1993 when it was linked to an outbreak of food poisoning from Jack-in-the-Box restaurants in the western United States.

Their paper published online Aug. 14 in the journal Genome Announcements reports the full, complete sequence with no gaps. Their analysis includes so-called jumping genes that can move around the same genome, sometimes causing damage to individual genes or enabling antibiotic resistance.

"With a , we can now pinpoint the precise location of all such elements, which might help to track and treat future outbreaks," said Ramy Aziz, the senior author on the paper. Aziz led the research as a visiting scientist working in Bernhard Palsson's Systems Biology Research Group at UC San Diego Jacobs School of Engineering. Aziz is also a professor at Cairo University in Egypt.

The for this historical strain was first published in 2001, but there were many gaps in the genome that could not be closed with the sequencing technology available to scientists in 2001. Given the importance of this strain as a major cause of , Palsson's Systems Biology Research Group recently sequenced its genome using a combination of sequencing data from instruments made by Pacific Biosciences and Illumina.

"New sequencing and assembly methods are enabling a full expose of pesky pathogens; there is no place to hide genetic characteristics anymore. The full genetic delineation of multiple pathogenic strains is likely to not only improve our understanding of their characteristics, but to find and exploit their vulnerabilities, said Palsson, the Galletti Professor of Bioengineering at UC San Diego.

Explore further: New models predict where E. coli strains will thrive

More information: Paper: genomea.asm.org/content/2/4/e00821-14.full.pdf

add to favorites email to friend print save as pdf

Related Stories

New models predict where E. coli strains will thrive

Nov 18, 2013

Bioengineers at the University of California, San Diego have used the genomic sequences of 55 E. coli strains to reconstruct the metabolic repertoire for each strain. Surprisingly, these reconstructions do an excellent job of ...

Single-cell genome sequencing gets better (w/ Video)

Jan 16, 2014

(Phys.org) —Bioengineers at the Jacobs School have created a better way to sequence genomes from individual cells. The breakthrough, which relies on microwells just 12 nanoliters in volume (see image), ...

Loblolly pine's immense genome conquered

Mar 20, 2014

The massive genome sequence of the loblolly pine—the most commercially important tree species in the United States and the source of most American paper products—has been completed by a nationwide research ...

Recommended for you

For legume plants, a new route from shoot to root

Sep 19, 2014

A new study shows that legume plants regulate their symbiotic relationship with soil bacteria by using cytokinins—signaling molecules— that are transmitted through the plant structure from leaves into ...

Controlling the transition between generations

Sep 18, 2014

Rafal Ciosk and his group at the FMI have identified an important regulator of the transition from germ cell to embryonic cell. LIN-41 prevents the premature onset of embryonic transcription in oocytes poised ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

verkle
not rated yet Sep 01, 2014
Really cool. This E. coli has about 5,400 genes, or about 1/4 what the human body has.

http://users.rcn....zes.html

Must be an incredibly complex organism.