Researchers develop novel method to synthesize nanoparticles

September 24, 2014
This figure illustrates the ease with which grams of many different types of oxide nanoparticles can be prepared in a single step. The first row of sample vials shows the initial salt solutions of the different elements. The second row shows the product after reaction with potassium superoxide (KO2) and the addition of methanol. The bottom row shows the grams of nanoparticles after being purified by centrifugation. Credit: U.S. Naval Research Laboratory

Scientists at the U.S. Naval Research Laboratory (NRL) Materials Science and Technology Division have developed a novel one-step process using, for the first time in these types of syntheses, potassium superoxide (KO2) to rapidly form oxide nanoparticles from simple salt solutions in water.

"Typically, the synthesis of nanoparticles involves the slow reaction of a weak oxidizing agent, such as hydrogen peroxide, with dilute solutions of metal salts or complexes in both aqueous and non-aqueous solvent systems," said Dr. Thomas Sutto, NRL research chemist. "The rapid exothermic reaction of potassium superoxide with the salt solutions results in the formation of insoluble oxide or hydroxide nanoparticulates."

An important advantage of this method is the capability of creating bulk quantities of materials. NRL has demonstrated that large quantities (over 10 grams) of oxide nanoparticles can be prepared in a single step, which is approximately four orders of magnitude higher yield than many other methods. The metal concentrations, usually in the millimolar (mM) amount, need to be low in order to prevent aggregation of the nanoparticles into larger clusters that could significantly limit the amount of material that can be prepared at any one time.

Oxide nanoparticles have been shown to be crucial components in numerous applications to include electronic and magnetic devices, energy storage and generation, and medical applications such as for use in magnetic resonance imaging (MRI). In all of these applications, particle size is critical to the utility and function of oxide nanoparticles—decreased particles size results in increased surface area, which can significantly improve the performance of the oxide nanoparticle.

In order to demonstrate the broad scale applicability of this new method, oxide or hydroxide nanoparticles have been prepared from representative elements from across the periodic table to rapidly produce nanometer sized oxides or hydroxides. In addition to the elements converted to oxide nanoparticles in the above illustration, it has also been shown that oxide nanoparticles can be prepared from second and third row transition metals, and even semi-metals such as tin, bismuth, thallium and lead.

One exciting aspect of this technique is that it can also be used to produce blends of nanoparticles. This has been demonstrated by preparing more complex materials, such as lithium cobalt oxide—a cathode material for lithium batteries; bismuth manganese oxide—a multiferroic material; and a 90 degrees Kelvin (K) superconducting Yttrium barium copper oxide material. As such, this new synthetic route to oxide also shows great promise for a multitude of other catalytic, electrical, magnetic, or electrochemical processes, from novel cathodes to solution preparation of other types of ceramic materials.

Explore further: Lungs may suffer when certain elements go nano

Related Stories

Lungs may suffer when certain elements go nano

January 28, 2014

( —Nanoparticles are used in all kinds of applications—electronics, medicine, cosmetics, even environmental clean-ups. More than 2,800 commercially available applications are now based on nanoparticles, and by ...

In Brief: Bifunctional plasmonic / magnetic nanoparticles

August 19, 2011

An amorphous-seed mediated strategy has been developed in the Center for Nanoscale Materials Nanophotonics Group at the Argonne National Laboratory for creating bifunctional nanoparticles composed of silver and iron oxide ...

Recommended for you

Smashing metallic cubes toughens them up

October 20, 2016

Scientists at Rice University are smashing metallic micro-cubes to make them ultrastrong and tough by rearranging their nanostructures upon impact.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 25, 2014
I would add that this is old news. The article was published in March in the Journal of Inorganic Chemistry. (IT WOULD BE SO NICE IF PHYS.ORG READERS DIDNT HAVE TO FIND THESE LINKS THEMSELVES!!!)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.