Magnetar discovered close to supernova remnant Kesteven 79

Sep 01, 2014
Credit: ESA/XMM-Newton/ Ping Zhou, Nanjing University, China

(Phys.org) —Massive stars end their lives with a bang, exploding as supernovas and releasing massive amounts of energy and matter. What remains of the star is a small and extremely dense remnant: a neutron star or a black hole.

Neutron stars come in several flavours, depending on properties such as their ages, the strength of the magnetic field concealed beneath their surface, or the presence of other stars nearby. Some of the energetic processes taking place around neutron stars can be explored with X-ray telescopes, like ESA's XMM-Newton.

This image depicts two very different that were observed in the same patch of the sky with XMM-Newton. The green and pink bubble dominating the image is Kesteven 79, the remnant of a located about 23,000 light-years away from us.

From the properties of the hot gas in Kesteven 79 and from its size, astronomers estimate that it is between 5000 and 7000 years old. Taking account of the time needed for light to travel to Earth, this means that the supernova that created it must have exploded almost 30,000 years ago. The explosion left behind a  a young neutron star with a weak magnetic field, which can be seen as the blue spot at the centre of Kesteven 79.

Beneath it, a blue splotch indicates an entirely different beast: a neutron star boasting an extremely strong magnetic field, known as a magnetar. Astronomers discovered this magnetar, named 3XMM J185246.6+003317, in 2013 by looking at images that had been taken in 2008 and 2009. After the discovery, they looked at previous images of the same patch of the sky, taken before 2008, but did not find any trace of the magnetar. This suggests that the detection corresponded to an outburst of X-rays released by the magnetar, likely caused by a dramatic change in the structure of its .

While the neutron star in the supernova remnant is relatively young, the magnetar is likely a million years old; the age difference means that it is very unlikely that the magnetar arose from the explosion that created Kesteven 79, but must have formed much earlier.

This false-colour image is a composite of 15 observations performed between 2004 and 2009 with the EPIC MOS camera on board XMM-Newton. The image combines data collected at energies from 0.3 to 1.2 keV (shown in red), 1.2 to 2 keV (shown in green) and 2 to 7 keV (shown in blue).

Explore further: Rare magnetar discovered in the vicinity of a supernova remnant

add to favorites email to friend print save as pdf

Related Stories

Image: Pulsar encased in a supernova bubble

Jun 02, 2014

(Phys.org) —Massive stars end their lives with a bang: exploding as spectacular supernovas, they release huge amounts of mass and energy into space. These explosions sweep up any surrounding material, creating ...

Magnetar formation mystery solved?

May 14, 2014

Magnetars are the super-dense remnants of supernova explosions. They are the strongest magnets known in the Universe—millions of times more powerful than the strongest magnets on Earth. A team of astronomers ...

A hidden population of exotic neutron stars

May 23, 2013

(Phys.org) —Magnetars – the dense remains of dead stars that erupt sporadically with bursts of high-energy radiation - are some of the most extreme objects known in the Universe. A major campaign using ...

Recommended for you

The entropy of black holes

Sep 12, 2014

Yesterday I talked about black hole thermodynamics, specifically how you can write the laws of thermodynamics as laws about black holes. Central to the idea of thermodynamics is the property of entropy, which c ...

Modified theory of dark matter

Sep 12, 2014

Dark matter is an aspect of the universe we still don't fully understand. We have lots of evidence pointing to its existence (as I outlined in a series of posts a while back), and the best evidence we have point ...

Gaia discovers its first supernova

Sep 12, 2014

(Phys.org) —While scanning the sky to measure the positions and movements of stars in our Galaxy, Gaia has discovered its first stellar explosion in another galaxy far, far away.

Astronomers unveil secrets of giant elliptical galaxies

Sep 12, 2014

New findings of how giant elliptical galaxies move have been discovered by an international team of astronomers using the newly installed Multi Unit Spectroscopic Explorer (MUSE) at the European Southern Observatory's (ESO) ...

User comments : 0