Plant life forms in the fossil record: When did the first canopy flowers appear?

Sep 02, 2014
Photograph of the research canopy crane in the Parque Natural San Lorenzo (tropical rainforest), Smithsonian Tropical Research Institute, Panamá, and a detail of the venation of a fossil angiosperm leaf from the Paleocene (Cerrejón formation, Colombia). Leaf vein density can be used in the fossil record to shed light on the origin of the Neotropical forest. Designed by Lina Gonzalez, Smithsonian Tropical Research Institute (Panamá). Photos by Smithsonian Tropical Research Institute, and Andrés Baresch, Stanford University.

Most plant fossils are isolated organs, making it difficult to reconstruct the type of plant life or its ecosystem structure. In their study for GEOLOGY, published online on 28 Aug. 2014, researchers Camilla Crifò and colleagues used leaf vein density, a trait visible on leaf compression fossils, to document the occurrence of stratified forests with a canopy dominated by flowering plants.

Using a 40-meter-tall canopy crane equipped with a gondola, they were able to collect leaves from the very top of trees in Panama and the United States. They measured leaf vein density in 132 species from two Panamanian tropical forests and one temperate forest in Maryland (USA). The team also compared the leaf vein values of canopy-top and forest-bottom leaves (i.e., on the forest floor).

The authors show that venation density, like plant metabolism (i.e., transpiration and photosynthesis), is higher in the leaves located in the and decreases in leaves at lower levels. Furthermore, they found that leaves from the , which are the closest analog to fossil floras, preserve this pattern.

The team also reanalyzed vein density data from the literature from the Early Cretaceous (132.5 million years ago) to the Paleocene (58 million years ago) to determine when flowering plants became part of the upper forest canopy. Vein density values similar to present ones appeared about 58 million years ago, indicating that the emergence of in the canopy occurred by the Paleocene.

Explore further: Leaf chewing links insect diversity in modern and ancient forests

More information: Variations in angiosperm leaf vein density have implications for interpreting life form in the fossil record, Camilla Crifò et al., Published online on 28 Aug. 2014; dx.doi.org/10.1130/G35828.1

add to favorites email to friend print save as pdf

Related Stories

How some leaves got fat: It's the veins

Apr 11, 2013

A "garden variety" leaf is a broad, flat structure, but if the garden happens to be somewhere arid, it probably includes succulent plants with plump leaves full of precious water. Fat leaves did not emerge ...

Recommended for you

Lightning plus volcanic ash make glass

9 hours ago

In their open-access paper for Geology, Kimberly Genareau and colleagues propose, for the first time, a mechanism for the generation of glass spherules in geologic deposits through the occurrence of volcan ...

A new level of earthquake understanding

14 hours ago

As everyone who lives in the San Francisco Bay Area knows, the Earth moves under our feet. But what about the stresses that cause earthquakes? How much is known about them? Until now, our understanding of ...

Combined Arctic ice observations show decades of loss

17 hours ago

It's no surprise that Arctic sea ice is thinning. What is new is just how long, how steadily, and how much it has declined. University of Washington researchers compiled modern and historic measurements to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.