Fabrication route improves the properties of aluminum-based nanocomposites

September 24, 2014
Fabrication route improves the properties of aluminum-based nanocomposites
Schematic diagram of friction stir processing, a method used to improve the hardness and tensile strength of aluminum-based nanocomposites. Credit: A*STAR Singapore Institute of Manufacturing Technology

One challenge in producing strong, elastic and hard-wearing nanocomposites is obtaining an even distribution of the nanoparticles in the metal matrix. Now, researchers at A*STAR have used a process known as friction stir processing (see image) to produce an evenly distributed mix of nanosized aluminum oxide (Al2O3) particles in aluminum. Their technique is a viable new method for manufacturing nanocomposites and has exciting potential for the car, space and defense industries.

"Current powder metallurgy or liquid processing methods fail to achieve uniform processing," says research leader Junfeng Guo, who is from the A*STAR Singapore Institute of Manufacturing Technology.

Guo's team drilled hundreds of 1-millimeter-diameter holes into the surface of a thin sheet of an alloy. They then injected a slurry of nanoparticles into the holes and heated the sheet in an oven. After cooling the sheet, the team plunged a rotating tool into it—this is the friction stir processing step. The friction generated between the tool and the sheet caused the material to plasticize. The tool was moved around to ensure that the entire sheet was plasticized.

Placing the nanoparticles in the sheet prior to the friction stir processing step significantly increased the concentration of nanoparticles in the composite. "It also reduced the amount of airborne particles produced during powder placement and friction stir processing," explains Guo.

The team used scanning electron microscopy to check two key properties that influence the strength of nanocomposites. They first demonstrated that the nanoparticles were uniformly dispersed, which means the material has no weak points. They also found that the grains or crystals of the aluminum matrix that recrystallized after being plasticized were extremely small; smaller aluminum matrix grains can flow past each other more smoothly than larger particles, enhancing the strength of the material.

By measuring the grain size after performing processing with and without the Al2O3 nanoparticles, the team showed that the contributed to the reduction in grain size.

The best nanoparticle distribution and smallest aluminum alloy grains were obtained after passing the rotating tool through the sheet four times. The team then demonstrated that the composite made in this way had significantly improved hardness and tensile strength compared to untreated sheets.

"We plan to continue this research to further improve the mechanical and thermal properties as well as the wear resistance of the nanocomposites," says Guo. "Eventually, we aim to commercialize our technology to aid local industry."

Explore further: New spin on friction-stir

More information: Guo, J. F., Liu, J., Sun, C. N., Maleksaeedi, S., Bi, G. et al. "Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed Al." Materials Science and Engineering: A 602, 143–149 (2014) dx.doi.org/10.1016/j.msea.2014.02.022

Related Stories

New spin on friction-stir

July 26, 2011

(PhysOrg.com) -- Researchers Zhili Feng, Alan Frederic and Stan David in Oak Ridge National Laboratory's Materials S&T Division have made significant progress toward a new metal processing technique, called friction-stir ...

Future naval force may sail with the strength of titanium

April 4, 2012

Steel may have met its match: An Office of Naval Research (ONR)-funded project will produce a full-size ship hull section made entirely with marine-grade titanium using a welding innovation that could help bring titanium ...

Scientists use nanoparticles to control growth of materials

May 19, 2014

(Phys.org) —Growth is a ubiquitous phenomenon in plants and animals. But it also occurs naturally in chemicals, metals and other inorganic materials. That fact has, for decades, posed a major challenge for scientists and ...

Lighter cars with new robotic welding method

June 12, 2014

A vehicle typically consists of several thousands of spot joints such as rivets, clinch joints or spot welds. They are used to bond together different parts of the vehicle, for example the car bonnet. But the rivets are costly ...

Recommended for you

Graphene under pressure

August 25, 2016

Small balloons made from one-atom-thick material graphene can withstand enormous pressures, much higher than those at the bottom of the deepest ocean, scientists at the University of Manchester report.

Designing ultrasound tools with Lego-like proteins

August 25, 2016

Ultrasound imaging is used around the world to help visualize developing babies and diagnose disease. Sound waves bounce off the tissues, revealing their different densities and shapes. The next step in ultrasound technology ...

Nanovesicles in predictable shapes

August 25, 2016

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, ...

'Artificial atom' created in graphene

August 22, 2016

In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this reason, such electron ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.