First evidence for water ice clouds found outside solar system

September 9, 2014
Credit: A. Fujii

A team of scientists led by Carnegie's Jacqueline Faherty has discovered the first evidence of water ice clouds on an object outside of our own Solar System. Water ice clouds exist on our own gas giant planets—Jupiter, Saturn, Uranus, and Neptune—but have not been seen outside of the planets orbiting our Sun until now. Their findings are published by The Astrophysical Journal Letters.

At the Las Campanas Observatory in Chile, Faherty, along with a team including Carnegie's Andrew Monson, used the FourStar near infrared camera to detect the coldest brown dwarf ever characterized. Their findings are the result of 151 images taken over three nights and combined. The object, named WISE J085510.83-071442.5, or W0855, was first seen by NASA's Wide-Field Infrared Explorer mission and published earlier this year. But it was not known if it could be detected by Earth-based facilities.

"This was a battle at the telescope to get the detection," said Faherty.

Chris Tinney, an Astronomer at the Australian Centre for Astrobiology, UNSW Australia and co-author on the result stated: "This is a great result. This object is so faint and it's exciting to be the first people to detect it with a telescope on the ground."

Brown dwarfs aren't quite very small stars, but they aren't quite either. They are too small to sustain the hydrogen fusion process that fuels stars. Their temperatures can range from nearly as hot as a star to as cool as a planet, and their masses also range between star-like and giant planet-like. They are of particular interest to scientists because they offer clues to star-formation processes. They also overlap with the temperatures of planets, but are much easier to study since they are commonly found in isolation.

The video will load shortly
A team of scientists led by Carnegie's Jacqueline Faherty has discovered the first evidence of water ice clouds on an object outside of our own Solar System. Water ice clouds exist on our own gas giant planets -- Jupiter, Saturn, Uranus, and Neptune -- but have not been seen outside of the planets orbiting our Sun until now. Their findings are published by The Astrophysical Journal Letters. Credit: Produced and directed by Brian Patrick Abbott. Written by Jacqueline K. Faherty

W0855 is the fourth-closest system to our own Sun, practically a next-door neighbor in astronomical distances. A comparison of the team's near-infrared images of W0855 with models for predicting the atmospheric content of showed evidence of frozen clouds of sulfide and water.

"Ice are predicted to be very important in the atmospheres of beyond our Solar System, but they've never been observed outside of it before now," Faherty said.

Explore further: Astronomers find evidence of water clouds in brown dwarf atmosphere

More information: arxiv.org/abs/1408.4671

Related Stories

Newly discovered celestial object defies categories

January 8, 2014

An object discovered by astrophysicists at the University of Toronto (U of T) nearly 500 light years away from the Sun may challenge traditional understandings about how planets and stars form.

The closest star system found in a century

March 11, 2013

(Phys.org) —A pair of newly discovered stars is the third-closest star system to the Sun, according to a paper that will be published in Astrophysical Journal Letters. The duo is the closest star system discovered since ...

Ultra-cool companion helps reveal giant planets

May 10, 2012

(Phys.org) -- An international team of astronomers led by David Pinfield of the University of Hertfordshire has found a brown dwarf that is more than 99% hydrogen and helium. Described as ultra-cool, it has a temperature ...

Recommended for you

Hubble catches a transformation in the Virgo constellation

December 9, 2016

The constellation of Virgo (The Virgin) is especially rich in galaxies, due in part to the presence of a massive and gravitationally-bound collection of over 1300 galaxies called the Virgo Cluster. One particular member of ...

Khatyrka meteorite found to have third quasicrystal

December 9, 2016

(Phys.org)—A small team of researchers from the U.S. and Italy has found evidence of a naturally formed quasicrystal in a sample obtained from the Khatyrka meteorite. In their paper published in the journal Scientific Reports, ...

Scientists sweep stodgy stature from Saturn's C ring

December 9, 2016

As a cosmic dust magnet, Saturn's C ring gives away its youth. Once thought formed in an older, primordial era, the ring may be but a mere babe – less than 100 million years old, according to Cornell-led astronomers in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.