Cell factory runs with fits and starts

September 3, 2014 by Ans Hekkenberg
This study has shown that metabolism and growth are inherently destabilised by molecular fluctuations, which is illustrated here. Molecular fluctuations are visualised as variations in color, and growth as variations in cell size (left image). Using genetics and image analysis it was possible to 'sort' cells based on their metabolic activity (right image). Random fluctuations in the synthesis of single enzymes were shown to destabilise the entire metabolic machinery of cells and hence their growth. Credit: Daan Kiviet & Sander Tans

Researchers from FOM institute AMOLF have discovered that metabolism, the process that converts molecules in a cell, proceeds irregularly. As metabolism is the motor that drives all biological activity in cells this instability may play a role in diseases such as cancer. The researchers published their study on 3 September 2014 in Nature.

Living cells are chemical factories that are in constant use. Cells take up sugars such as glucose, break these down into smaller molecules and use the smaller molecules to construct DNA, proteins, cell membranes and energy molecules that drive the factory. This step-by-step process, called metabolism, enables cells to perform various functions but also to grow and multiply and therefore to create an entire body.

Up until now, scientists have assumed that the cell factory always operated in a regular manner because there are plentiful supplies of sugar and other nutrients and cells consist of so many molecules that the random movements of molecules are negligible. "That was a nice idea, because even if metabolism would be regular and constant it is extremely difficult to understand how the countless reactions influence each other", says research leader professor Sander Tans. However, his team has discovered that the metabolic activity of cells fluctuates in an unpredictable manner and that makes the functioning of the cell factory even more complex.

Relay race

The researchers came to the conclusion thanks to two smart choices. First they zoomed in on a single reaction in the cell factory at a time, for example a sugar breakdown step. By binding fluorescent proteins to enzymes that facilitate this reaction they could record both the quantity of enzymes and the rate of the reaction. In addition the physicists developed a new, automated microscopic technique to follow the growth rate of individual E. coli cells during their growth and reproduction process.

The researchers discovered that in the enzyme production subsequently resulted in a change in the of E. coli cells. A change in the quantity of enzymes therefore led to a change in the rate of the breakdown reaction and those fluctuations were transmitted step-by-step to all subsequent reactions, just like a baton in a relay race, so that eventually the cell's growth became disrupted.

According to Tans, this is the first time that researchers have studied the dynamics and stability of metabolism. The discovery elicits a range of interesting questions. Tans: "Biological growth seems to be far more chaotic than was previously thought. In this light it is similar to economic growth, in which are commonplace. Do cells actively work to limit the chaos to a certain extent? And if so, how? Why has evolution not managed to completely suppress this chaos, so that all can always grow quickly? And finally, do variations in the play a role in diseases where irregular growth is a characteristic, such as cancer?"

This research was co-financed by the Netherlands Organisation for Scientific Research (NWO).

Explore further: Sugar mimics guide stem cells toward neural fate

More information: Daniel J. Kiviet, Philippe Nghe, Noreen Walker, Sarah Boulineau, Vanda Sunderlikova and Sander J. Tans, Stochasticity of metabolism and growth at the single-cell level, Nature, DOI: 10.1038/nature13582

Related Stories

Sugar mimics guide stem cells toward neural fate

July 30, 2014

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

New tool identifies therapeutic proteins in a 'snap'

August 21, 2014

(Phys.org) —In human and bacterial cells, glycosylation – the chemical process of attaching complex sugar molecules to proteins – is as fundamental as it gets, affecting every biological mechanism from cell signaling ...

Recommended for you

In changing oceans, cephalopods are booming

May 23, 2016

Humans have changed the world's oceans in ways that have been devastating to many marine species. But, according to new evidence, it appears that the change has so far been good for cephalopods, the group including octopuses, ...

A 100-million-year partnership on the brink of extinction

May 24, 2016

A relationship that has lasted for 100 million years is at serious risk of ending, due to the effects of environmental and climate change. A species of spiny crayfish native to Australia and the tiny flatworms that depend ...

Rare evolutionary event detected in the lab

May 23, 2016

It took nearly a half trillion tries before researchers at The University of Texas at Austin witnessed a rare event and perhaps solved an evolutionary puzzle about how introns, non-coding sequences of DNA located within genes, ...

Is aging inevitable? Not necessarily for sea urchins

May 25, 2016

Sea urchins are remarkable organisms. They can quickly regrow damaged spines and feet. Some species also live to extraordinary old ages and—even more remarkably—do so with no signs of poor health, such as a decline in ...

Why fruit fly sperm are giant

May 25, 2016

In the animal kingdom, sperm usually are considerably smaller than eggs, which means that males can produce far more of them. Large numbers of tiny sperm can increase the probability of successful fertilization, especially ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.