'Zombie' bacteria are nothing to be afraid of

August 28, 2014
Zombie bacteria are nothing to be afraid of
Methicillin-resistant Staphylococcus aureus (MRSA) bacteria dividing. Under nutrient-rich conditions bacteria go into hyper-drive, dividing as often as once every 20 minutes. The discovery of fail-safe points in their cell cycles may provide a way to shut down rampant proliferation. Credit: Centers for Disease Control and Prevention

A cell is not a soap bubble that can simply pinch in two to reproduce. The ability to faithfully copy genetic material and distribute it equally to daughter cells is fundamental to all forms of life. Even seemingly simple single-celled organisms must have the means to meticulously duplicate their DNA, carefully separate the newly copied genetic material, and delicately divide in two to ensure their offspring survive.

In eukaryotic cells such as those in plants and animals, an elaborate molecular circuitry coordinates duplication and separation of genetic material with division, much as the control knob on a washing machine coordinates agitation, rinsing and spinning. And the system, like the control system, has sensors that detect anomalies and shut things down if something is wrong.

What about bacteria? In the August 28 issue of Current Biology, Heidi A. Arjes, a doctoral student in the lab of Petra Levin, PhD, associate professor of biology in Arts & Sciences at Washington University in St. Louis, presents the first experimental data that show there are at least two fail-safe points in the bacterial cell cycle that tie DNA to cell division.

A cell that stumbles at either division or DNA replication can repair itself and re-enter the cell cycle. But if it does not do so quickly, the fail-safes are activated, forcing the cell to exit the cell cycle forever. It then enters a zombie-like state and is unable to reproduce even under the most favorable of conditions.

When nutrients are scarce, bacteria grow slowly, working through the cell cycle step-by-step. In nutrient rich conditions, however, bacteria take advantage of the situation to multiply as rapidly as possible, overlapping two of the steps: cell division and DNA replication—something that never happens in eukaryotic cells.

Because of their ability to overlap these two essential processes, bacteria have been thought to lack the fail-safe mechanisms that ensure stepwise progression through reproduction in eukaryotic cells.

Understanding the mechanisms of bacterial cell-cycle control may have major payoffs for medicine. Drugs that shut down the cell cycle could be used to fight bacterial infections. Not only would they prevent bacteria from multiplying, they would prevent them from passing on resistance genes or recovering once the drug had been metabolized.

Dividing at top speed

The bacterial cell cycle begins when a newborn daughter cell elongates and begins to make another copy of its DNA. As DNA replication proceeds, a division ring, called the Z-ring, starts to assemble at mid-cell. The Z-ring recruits other molecules to form a contractile ring and, once there are at least two complete copies of the DNA, pinches the bacterial cell in two to form daughter cells.

So far the bacterial cell cycle isn't all that different from the eukaryotic cell cycle. But when bacteria find themselves in nutrient-rich conditions, they shift into high gear, doubling in size and dividing as often as once every 20 minutes. Since it takes a bacterium 40 minutes to completely copy its DNA, how can it divide once every 20 minutes?

This video is not supported by your browser at this time.
Heidi Arjes of Washington University in St. Louis explains how the failsafes in the bacterial cell cycle work. A bacterium that fails to pass either failsafe enters a zombified state of suspended animation. Credit: Heidi Arjes

To make everything come out right, bacteria employ "multifork replication": they initiate new rounds of DNA copying before the first round finishes. Getting a head start on DNA replication ensures at least one set of will be ready before they divide. Only the most mature DNA round must be complete before the cell divides. The other replication forks will finish in subsequent generations.

It was this overlap between replication and division that led to the traditional view that the bacterial cell cycle consists of parallel processes that are only loosely linked.

It was common sense that the processes had to be connected somehow, Levin said. After all, bacteria wait until one set of chromosomes is complete to divide. Dividing across incomplete or mingled DNA is usually lethal. "But until Heidi's data, people spoke of the bacterial cell cycle as somehow magically coordinated even though there was no mechanism for doing so. Things just somehow worked out fine even though no control system had been identified."

Blocking division blocks DNA replication

In the Current Biology article, Arjes and coworkers describe experiments that show cell division and DNA replication are not independent. New rounds of DNA replication depend on the successful completion of cell division and assembly of the division machinery at midcell depends on the initiation of DNA replication.

One set of experiments showed that after division is blocked, DNA replication gradually diminishes and, after about five generations, the bacterium reached the point of no return. In other experiments DNA replication was blocked directly. In this case, it took about three generations for the bacterium to reach the point of no return. The timing suggests DNA replication might be the event that shunts bacteria into the state of suspended animation.

What is the benefit of terminal arrest in a single-celled organism, whose main goal in life is to divide?

"It might actually be a form of altruism," Arjes said. "In nature, bacteria often exist not in isolation, but in communities. An aged or unhealthy cell that removed itself from the population would benefit the community as a whole because it would no longer compete for nutrients or produce defective daughter cells."

Zombifying bacteria

Although the research firmly establishes the existence of two fail-safe points in the bacterial cell cycle, the mechanisms that ensure proper cell-cycle progression are still a mystery.

"That's the next thing we have to do," Levin said. "Figure out how the division machinery is telling the DNA replication machinery something is wrong," and how the "information that DNA replication isn't working is communicated to the division machinery."

Arjes examines a tame lab strain of the bacteria Staphylococcus aureus on blood agar plates. Credit: Petra Levin

These signaling pathways will be great targets for new antibiotic therapies. Drugs that drove bacteria past the point of no return would prevent them from proliferating, stalling an infection. Blocking DNA replication would prevent bacteria from sharing mutations that confer antibiotic resistance. "Most importantly," says Arjes, "if a bacterium has encountered a terminal cell-cycle arrest, it cannot recover even after the drug has been metabolized."

"People are already working on drugs that hit the division machinery," said Arjes. "They've done a lot of screens; in fact in our experiments we used a new drug called PC190723 that blocks division in Staphylococcus aureus. It was synthesized for us by Jared Shaw, a chemist at the University of California at Davis, and is being tested against MRSA (methicillin-resistant Staphylococcus aureus) isolates.

"Combination therapy with PC190723 and other drugs such as methicillin, an extended-spectrum penicillin antibiotic, appear to be effective against MRSA even though methicillin alone is no longer effective. The division blocker somehow sensitizes the bacteria to drugs to which they have become resistant."

The eukaryotic cell cycle has been studied for more than a century. Three scientists won the Nobel Prize for Physiology and Medicine in 2001 for figuring out the regulators that prevent the cell from dividing promiscuously and endlessly. It's even possible to play a cell cycle control game at the Nobel site, Nobelprize.org.

"When I talk to people who study about our work with the bacterial , they say, 'What? This is new? People don't know this?'" said Arjes. "But when I talk to people who study bacterial cells, they're astonished. It's a completely novel idea."

Explore further: The multiplication of cells under close observation

Related Stories

'Parent' cells reset the cell division clock

May 8, 2014

(Phys.org) —Melbourne researchers have overturned a 40-year-old theory on when and how cells divide, showing that 'parent' cells program a cell division time for their offspring that is different from their own.

Research explores processes behind cell division

July 15, 2014

A new theoretical framework outlined by a Harvard scientist could help solve the mystery of how bacterial cells coordinate processes that are critical to cellular division, such as DNA replication, and how bacteria know when ...

Molecular gate that could keep cancer cells locked up

July 31, 2014

In a study published today in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, reveal the intricate ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.