Water window imaging opportunity

Aug 21, 2014
Water window imaging opportunity

Ever heard of the water window? It consists of radiations in the 3.3 to 4.4 nanometre range, which are not absorbed by the water in biological tissues. New theoretical findings show that it is possible to develop coherent radiations within the water window. These could be the basis of an optimal technique to obtain a high-contrast image of the biological samples or to be used in high-precision spectroscopy.

Now, a new theoretical study identifies the physical mechanism needed to efficiently generate the harmonic radiations—which are multiples of an incoming 's frequency—at high laser intensities that occur beyond the saturation threshold of atoms and molecules. These findings, aimed at improving conventional methods of coherent radiation production to reach the water window, were recently published in the EPJ D by José Pérez-Hernández from the Centre for Pulsated Laser, CLPU, in Salamanca, Spain, and colleagues.

When an intense and short laser pulse interacts with an atom or molecule, one of the resultant physical processes is the High-order Harmonic Generation (HHG) process, which is capable of changing the driving laser pulse into new harmonic frequencies. HHG also provides a direct way to synthesise atto-second pulses (10-18s range) and produce coherent radiation in the extreme UV range, dubbed XUV and EUV.

In previous similar work, studies focused on hydrogen as the atomic target. In the present work, the authors extend the study to argon atoms—a gas typically providing a high enough frequency conversion efficiency to detect the HHG. The authors use the same formalism as in hydrogen studies, consisting in mathematical equations combined with a quantum mechanical approach using numerical computation and providing a quantitative description of the HHG spectrum. The experimental confirmation of the reported prediction, however, still remains a challenge.

Explore further: Used MRI magnets get a second chance at life in high-energy physics experiments

More information: Pérez-Hernández, J. A. et al. (2014). High order harmonic generation at high laser intensities beyond the tunnel regime. European Physical Journal D. DOI: 10.1140/epjd/e2014-50086-6

Related Stories

Five ways to put tiny targets in front of an X-ray laser

Feb 03, 2015

X-ray devices have long been used to see the inner structure of things, from bone breaks in the human body to the contents of luggage at airport security checkpoints. But to see life's chemistry and exotic materials at the ...

Nanotech process makes heat-resistant dyes

Oct 03, 2014

You may have heard about the hazards posed by pranksters who shine laser pointers at airplanes during takeoff or landing. One way to keep those beams of concentrated light from blinding pilots is to incorporate ...

Recommended for you

SLAC gears up for dark matter hunt with LUX-ZEPLIN

May 21, 2015

Researchers have come a step closer to building one of the world's best dark matter detectors: The U.S. Department of Energy (DOE) recently signed off on the conceptual design of the proposed LUX-ZEPLIN (LZ) ...

First images of LHC collisions at 13 TeV

May 21, 2015

Last night, protons collided in the Large Hadron Collider (LHC) at the record-breaking energy of 13 TeV for the first time. These test collisions were to set up systems that protect the machine and detectors ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.