Water window imaging opportunity

Aug 21, 2014
Water window imaging opportunity

Ever heard of the water window? It consists of radiations in the 3.3 to 4.4 nanometre range, which are not absorbed by the water in biological tissues. New theoretical findings show that it is possible to develop coherent radiations within the water window. These could be the basis of an optimal technique to obtain a high-contrast image of the biological samples or to be used in high-precision spectroscopy.

Now, a new theoretical study identifies the physical mechanism needed to efficiently generate the harmonic radiations—which are multiples of an incoming 's frequency—at high laser intensities that occur beyond the saturation threshold of atoms and molecules. These findings, aimed at improving conventional methods of coherent radiation production to reach the water window, were recently published in the EPJ D by José Pérez-Hernández from the Centre for Pulsated Laser, CLPU, in Salamanca, Spain, and colleagues.

When an intense and short laser pulse interacts with an atom or molecule, one of the resultant physical processes is the High-order Harmonic Generation (HHG) process, which is capable of changing the driving laser pulse into new harmonic frequencies. HHG also provides a direct way to synthesise atto-second pulses (10-18s range) and produce coherent radiation in the extreme UV range, dubbed XUV and EUV.

In previous similar work, studies focused on hydrogen as the atomic target. In the present work, the authors extend the study to argon atoms—a gas typically providing a high enough frequency conversion efficiency to detect the HHG. The authors use the same formalism as in hydrogen studies, consisting in mathematical equations combined with a quantum mechanical approach using numerical computation and providing a quantitative description of the HHG spectrum. The experimental confirmation of the reported prediction, however, still remains a challenge.

Explore further: Lightweight membrane can significantly reduce in-flight aircraft noise

More information: Pérez-Hernández, J. A. et al. (2014). High order harmonic generation at high laser intensities beyond the tunnel regime. European Physical Journal D. DOI: 10.1140/epjd/e2014-50086-6

Related Stories

Silicon Valley marks 50 years of Moore's Law

2 hours ago

Computers were the size of refrigerators when an engineer named Gordon Moore laid the foundations of Silicon Valley with a vision that became known as "Moore's Law."

The appeal of being anti-GMO

2 hours ago

A team of Belgian philosophers and plant biotechnologists have turned to cognitive science to explain why opposition to genetically modified organisms (GMOs) has become so widespread, despite positive contributions ...

Micro fingers for arranging single cells

2 hours ago

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

Image: Sentinel-1A satellite images Florida

2 hours ago

The peninsula sits between the Gulf of Mexico to the west, and the Atlantic Ocean to the east. The large body of water at the top of the image is the freshwater Lake Okeechobee. Covering about 1900 sq km, ...

Recommended for you

Thinner capsules yield faster implosions

22 hours ago

In National Ignition Facility (NIF) inertial confinement fusion (ICF) experiments, the fusion fuel implodes at a high speed in reaction to the rapid ablation, or blow-off, of the outer layers of the target ...

Direct visualization of magnetoelectric domains

Apr 27, 2015

A novel microscopy technique called magnetoelectric force microscopy (MeFM) was developed to detect the local cross-coupling between magnetic and electric dipoles. Combined experimental observation and theoretical ...

Upside down and inside out

Apr 27, 2015

Researchers have captured the first 3D video of a living algal embryo turning itself inside out, from a sphere to a mushroom shape and back again. The results could help unravel the mechanical processes at ...

Heat makes electrons spin in magnetic superconductors

Apr 24, 2015

Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published yesterday in Physical Review Le ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.