Process designs tops and yo-yos with stable spins despite asymmetric shapes

August 8, 2014

Tops and yo-yos are among the oldest types of playthings but researchers at Disney Research Zurich and ETH Zurich have given them a new spin with an algorithm that makes it easier to design these toys so that they have asymmetric shapes.

The can take a 3D model of an and, within less than a minute, calculate how mass can be distributed within the object to enable a stable spin around a desired axis. Sometimes, adding voids within the object is sufficient to provide stability; in other cases, the object's shape might need to be altered a bit or a heavier material might be added inside.

"Our approach is effective on a wide range of models, from characters such as an elephant balancing on its toe, or an armadillo break-dancing on its shell, to abstract shapes," said Moritz Bächer, a post-doctoral researcher at Disney Research Zurich. "It's well-suited to objects that can be produced with a 3D printer, which we used to make tops and yo-yos with unusual shapes but remarkably stable spins."

The research will be presented at ACM SIGGRAPH 2014, the International Conference on Computer Graphics and Interactive Techniques in Vancouver, Aug. 10-14.

The work could have applications beyond fanciful and customized designs for spinning toys. The algorithm modifies mass within an object to optimize its "moment of inertia," a physical property that measures the resistance to rotations about a given axis.

Moment of inertia is a property fundamental to a number of mechanical systems so the algorithm may also be useful in the computational design of mechanical structures, animatronics and robotics, said Bernd Bickel, research scientist at Disney Research Zurich. By controlling inertial properties of individual parts, it may be possible to minimize a system's overall inertial resistance and thus reduce energy consumption.

Though spinning toys have existed since antiquity, new designs have always required a certain amount of trial and error, relying on the intuition and patience of artists and hobbyists. Not surprisingly, designs tend to be rotationally symmetric.

The new method measures the spinnability of a shape on an axis specified by the user. It then optimizes spin by counterbalancing asymmetric mass distribution and placing the center of mass as low on the rotation axis as possible. For many shapes, simply hollowing out certain areas is sufficient to improve spin quality; in other cases, the method can make changes in the external shape, as well as the internal voids.

If changing the shape is not acceptable, the method also can incorporate heavier materials inside the object. When the object is produced with a 3D printer, as the researchers did in making proof-of-principle tops and yo-yos, the use of heavier materials requires an additional fabrication step.

The approach also can be adapted to the design of non-spinning, statically balanced objects.

Explore further: Researchers develop software tools to create physical versions of virtual characters

More information: More information, including a video, is available on the project web site at www.disneyresearch.com/project/spin-it/

Related Stories

Software systems add motion to physical characters

August 8, 2014

New 3D printing techniques have made it possible for just about anybody to fabricate fanciful plastic characters and sculptures, two new computational design methods developed by Disney Research Zurich are making it possible ...

New interactive method synchronizes multiple videos

August 8, 2014

Disney Research Zurich has developed a new tool to help video editors synchronize multiple video clips based on the visual content of the videos, rather than relying on timecodes or other external markers. Current editing ...

Recommended for you

Interactive tool lifts veil on the cost of nuclear energy

August 24, 2015

Despite the ever-changing landscape of energy economics, subject to the influence of new technologies and geopolitics, a new tool promises to root discussions about the cost of nuclear energy in hard evidence rather than ...

Smart home heating and cooling

August 28, 2015

Smart temperature-control devices—such as thermostats that learn and adjust to pre-programmed temperatures—are poised to increase comfort and save energy in homes.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.