New tools advance bio-logic: Researchers build more sophisticated synthetic gene circuits

August 4, 2014 by Mike Williams
New tools advance bio-logic
The researchers are using multiple chimeric transcription factors as logic circuits to perform complex tasks in cells. The circuits are triggered when modular protein domains sense the presence of specific chemical combinations in a cell. Credit: Bennett Lab

( —Researchers at Rice University and the University of Kansas Medical Center are making genetic circuits that can perform more complex tasks by swapping protein building blocks.

The modular genetic circuits engineered from parts of otherwise unrelated bacterial genomes can be set up to handle multiple chemical inputs simultaneously with a minimum of interference from their neighbors.

The work reported in the American Chemical Society journal ACS Synthetic Biology gives scientists more options as they design synthetic for specific tasks, such as the production of biofuels, environmental remediation or the treatment of human diseases.

The researchers are creating complex genetic logic circuits similar to those used to build traditional computers and electrical devices. In a simple circuit, if one input and another input are both present, the circuit carries out its instruction. With genetic circuitry based on this type of Boolean logic, a genetic logic circuit might prompt the creation of a specific protein when it senses two chemicals—or prompt a cell's DNA to repress the creation of that protein.

Simple circuits have become easier to create as synthetic biologists develop more tools, but they require more sophisticated tools for complex problems. Rice's Matthew Bennett and his colleagues are intent upon following a path similar to that of computer programmers whose capabilities grew from simple Pong to the immersive worlds of modern games.

"One of the ultimate goals of this technology is to allow cells to sense and respond to their environment in programmatic ways," said Bennett, an assistant professor of biochemistry and cell biology. "We want to be able to program cells to go into an environment and do what they're supposed to do.

"Right now, one of the main ways we do that is through transcriptional . These are akin to electronic circuits—the logic gates in our computers. In cells, they work a little bit differently, but there are a lot of parallels."

Rice's David Shis (left) and Matthew Bennett are advancing synthetic biology with their work to develop more complicated, and capable, genetic circuits that mimic computer circuits to perform tasks in cells.

Logic gates designed by Bennett's team and others react in a programmed way when they sense chemicals in their immediate environment. If certain combinations of chemicals are present in the environment, the gate will turn on a gene that may either repress or promote the expression of a protein.

"A lot of work in has gone into programming cells to make decisions better and more efficiently," Bennett said. "That's what this paper is addressing. We found a new way of creating very modular and easy-to-use genetic systems to create highly responsive transcriptional logic."

The research led by Rice graduate student David Shis drew from a genetic toolbox of chimeric (with parts from different sources) transcription factors. These modular proteins incorporate the gene regulatory capacity of one transcription factor and the environmental sensing capabilities of another. The researchers demonstrated that as many as four chimeras with the same DNA-binding modules can work together and serve as gates with multiple inputs, either repressing—or overriding the repression of—specific genes. They successfully tested the ability of chimera combinations in the bacteria Escherichia coli to up- or down-regulate the expression of a gene encoding green fluorescent protein.

"Often, when you make a genetic logic gate, you have to have many genes in the background to allow the gate to work," Bennett said. "We've been able to eliminate the need for that by programming transcription factors—which are specific proteins that turn genes on and off—to respond to their environment directly and activate a specific gene in a very modular way.

"We can now program both environmental sensing and downstream genetic regulation into the same module," he said.

Bennett said he sees synthetic biology addressing many issues. "We might be able to use cells to report on, or remediate, environmental pollution. Or we might be able to program them to find a tumor in your body and respond to it. To do that, we need to be able to instruct cells to sense the environment of the tumor and, depending on what chemicals the cells detect, respond accordingly."

Metabolic engineers might find complex synthetic circuits that are able to adjust on the fly, he said. "In fermentation, for example, you might want gene regulation in the cells to change as a process evolves. These new circuits can sense different sugars in the culture and direct gene regulation to maximize production."

Explore further: NIH backs Rice University study of delay in gene transcription networks

More information: "Modular, Multi-Input Transcriptional Logic Gating with Orthogonal LacI/GalR Family Chimeras." David L. Shis, Faiza Hussain, Sarah Meinhardt, Liskin Swint-Kruse, and Matthew R. Bennett. ACS Synthetic Biology Article ASAP. DOI: 10.1021/sb500262f

Related Stories

A complex logic circuit made from bacterial genes

October 12, 2012

(—By force of habit we tend to assume computers are made of silicon, but there is actually no necessary connection between the machine and the material. All that an engineer needs to do to make a computer is to ...

Math modeling integral to synthetic biology research

April 4, 2014

A long-standing challenge in synthetic biology has been to create gene circuits that behave in predictable and robust ways. Mathematical modeling experts from the University of Houston (UH) collaborated with experimental ...

Recommended for you

Scientists overcome key CRISPR-Cas9 genome editing hurdle

December 1, 2015

Researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT have engineered changes to the revolutionary CRISPR-Cas9 genome editing system that significantly cut down on "off-target" ...

Study finds 'rudimentary' empathy in macaques

December 1, 2015

(—A pair of researchers with Centre National de la Recherche Scientifique and Université Lyon, in France has conducted a study that has shown that macaques have at least some degree of empathy towards their fellow ...

Which came first—the sponge or the comb jelly?

December 1, 2015

Bristol study reaffirms classical view of early animal evolution. Whether sponges or comb jellies (also known as sea gooseberries) represent the oldest extant animal phylum is of crucial importance to our understanding of ...

Trap-jaw ants exhibit previously unseen jumping behavior

December 1, 2015

A species of trap-jaw ant has been found to exhibit a previously unseen jumping behavior, using its legs rather than its powerful jaws. The discovery makes this species, Odontomachus rixosus, the only species of ant that ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.