Team identifies process producing neuronal diversity in fruit flies' visual system

Aug 28, 2014

New York University biologists have identified a mechanism that helps explain how the diversity of neurons that make up the visual system is generated.

"Our research uncovers a process that dictates both timing and in order to engender the heterogeneity of used for vision," explains NYU Biology Professor Claude Desplan, the study's senior author.

The study's other co-authors were: Claire Bertet, Xin Li, Ted Erclik, Matthieu Cavey, and Brent Wells—all postdoctoral fellows at NYU.

Their work, which appears in the latest issue of the journal Cell, centers on neurogenesis—the process by which neurons are created.

A central challenge in developmental neurobiology is to understand how —stem cells that differentiate to form one or more kinds of cells—produce the vast of neurons, glia, and non-neuronal cells found in the adult Central Nervous System (CNS). Temporal patterning is one of the core mechanisms generating this diversity in both invertebrates and vertebrates. This process relies on the sequential expression of transcription factors into progenitors, each specifying the production of a distinct neural cell type.

In the Cell paper, the researchers studied the formation of the visual system of the fruit fly Drosophila. Their findings revealed that this process, which relies on temporal patterning of neural progenitors, is more complex than previously thought.

They demonstrate that in addition to specifying the production of distinct neural cell type over time, temporal factors also determine the survival or death of these cells as well as the mode of division of progenitors. Thus, temporal patterning of neural progenitors generates cell diversity in the adult by specifying the identity, the survival, and the number of each unique neural cell type.

Explore further: Researchers defined the early lineage segregation during early mammalian heart development

Related Stories

Recommended for you

How to reset a diseased cell

May 01, 2015

In proof-of-concept experiments, researchers at University of California, San Diego School of Medicine demonstrate the ability to tune medically relevant cell behaviors by manipulating a key hub in cell communication networks. ...

Mechanisms for continually producing sperm

May 01, 2015

Continually producing sperm over a long time is important to procreate the next generation. Researchers of the National Institute for Basic Biology, National Institutes of Natural Sciences in Japan, Ms. Kanako ...

Training pig skin cells for neural development

May 01, 2015

A pig's skin cells may hold the key to new treatments and cures for devastating human neurological diseases. Researchers from the University of Georgia's Regenerative Bioscience Center have discovered a process ...

Viruses: You've heard the bad—here's the good

Apr 30, 2015

"The word, virus, connotes morbidity and mortality, but that bad reputation is not universally deserved," said Marilyn Roossinck, PhD, Professor of Plant Pathology and Environmental Microbiology and Biology at the Pennsylvania ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.