Symphony of nanoplasmonic and optical resonators produces laser-like light emission

Aug 26, 2014 by Rick Kubetz
Hybrid optoplasmonic system showing the operation of amplification. Credit: Nathan Bajandas, Beckman ITG

By combining plasmonics and optical microresonators, researchers at the University of Illinois at Urbana-Champaign have created a new optical amplifier (or laser) design, paving the way for power-on-a-chip applications.

"We have made optical systems at the microscopic scale that amplify light and produce ultra-narrowband spectral output," explained J. Gary Eden, a professor of electrical and computer engineering (ECE) at Illinois. "These new are well-suited for routing optical power on a chip containing both electronic and optical components.

"Their potential applications in medicine are exciting because the amplifiers are actuated ('pumped') by light that is able to pass through human skin. For this reason, these microsphere-based amplifiers are able to transmit signals from cells and buried biomedical sensors to electrical and optical networks outside the body."

The speed of currently available semiconductor electronics is limited to about 10 GHz due to heat generation and interconnects delay time issues. Though, not limited by speed, dielectric-based photonics are limited in size by the fundamental laws of diffraction. The researchers, led by Eden and ECE associate professor Logan Liu, found that plasmonics—metal nanostructures—can serve as a bridge between photonics and nanoelectronics, to combine the size of nanoelectronics and the speed of dielectric photonics.

"We have demonstrated a novel optoplasmonic system comprising plasmonic nanoantennas and optical microcavities capable of active nanoscale field modulation, frequency switching, and amplification of signals," states Manas Ranjan Gartia, lead author of the article, "Injection- Seeded Optoplasmonic Amplifier in the Visible," published in the journal Scientific Reports. "This is an important step forward for monolithically building on-chip light sources inside future chips that can use much less energy while providing superior speed performance of the chips."

At the heart of the amplifier is a microsphere (made of polystyrene or glass) that is approximately 10 microns in diameter. When activated by an intense beam of light, the sphere generates internally a narrowband optical signal that is produced by a process known as Raman scattering. Molecules tethered to the surface of the sphere by a protein amplify the Raman signal, and in concert with a nano-structured surface in contact to the sphere, the amplifier produces visible (red or green) light having a bandwidth that matches the internally-generated signal.

The proposed design is well-suited for routing narrowband optical power on-a-chip. Over the past five decades, optical oscillators and amplifiers have typically been based on the buildup of the field from the spontaneous emission background. Doing so limits the temporal coherence of the output, lengthens the time required for the optical field to grow from the noise, and often is responsible for complex, multiline spectra.

"In our design, we use Raman assisted injection-seeded locking to overcome the above problems. In addition to the spectral control afforded by injection-locking, the effective Q of the can be specified by the bandwidth of the injected Raman signal," Gartia said. This characteristic contrasts with previous WGM-based lasers and amplifiers for which the Q is determined solely by the WGM resonator.

Explore further: Improved design of lasers on optoelectronic chips will advance optical communications

More information: www.nature.com/srep/2014/14082… /full/srep06168.html

add to favorites email to friend print save as pdf

Related Stories

Giant optical gain in a rare-earth-ion-doped microstructure

Jan 12, 2012

Prof. Markus Pollnau and co-workers at the MESA+ Institute for Nanotechnology at the University of Twente (The Netherlands) have developed a rare-earth-ion-doped optical amplifier with performance comparable to semiconductor ...

Novel optical amplifier without the noise

Jul 08, 2011

Researchers in Sweden have succeeded in delivering an optical amplifier capable of amplifying light with extremely low noise. The study is published in the journal Nature Photonics.

Photonics: Enabling next-generation wireless networks

Mar 12, 2014

Wireless transmission at microwave frequencies is important for high-data-rate transmission applications, such as mobile phone networks, satellite links and remote imaging. Now, Xianshu Luo and colleagues ...

Nanophotonics experts create powerful molecular sensor

Jul 15, 2014

(Phys.org) —Nanophotonics experts at Rice University have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. Newly published tests found the device could ...

Recommended for you

Scientists develop compact medical imaging device

Oct 23, 2014

Scientists at the MIRA research institute, in collaboration with various companies, have developed a prototype of a handy device that combines echoscopy (ultrasound) with photoacoustics. Combining these two ...

A 'Star Wars' laser bullet

Oct 22, 2014

Action-packed science-fiction movies often feature colourful laser bolts. But what would a real laser missile look like during flight, if we could only make it out? How would it illuminate its surroundings? ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

EnergySage
1 / 5 (1) Aug 26, 2014
As solar technology continues to grow so does the capacity and energy efficiency of solar cells. The reliability of PV systems improves everyday and the cost of going solar are declining at a quick pace. Solar energy can reduce your electricity costs and earn you annual returns. Learn more about the financial benefits of solar PV technology. http://bit.ly/1heY7sw