A study of possible extended symmetries of field theoretic systems

August 15, 2014
A study of possible extended symmetries of field theoretic systems

Many physical systems, from superfluids to pi mesons, are understood to be manifestations of spontaneous symmetry breaking, whereby the symmetries of a system are not realized by its lowest energy state. A consequence of spontaneous symmetry breaking is the existence of excitations known as Goldstone bosons, which account for the broken symmetries. Here the authors investigate systems with larger than usual amounts of broken symmetry.

There has been much recent interest, especially among cosmologists, in theories known as galileons. Galileons are an interesting and novel, though still hypothetical, class of effective scalar fields which are extremely universal and have attracted much recent attention. They arise generically in describing the short distance behavior of the new degrees of freedom introduced during the process of modifying gravity, and in describing the dynamics of extra dimensional brane worlds. Modified gravity and brane worlds are just some of the ideas that have been studied as possible solutions to the cosmological constant problem—the problem of explaining why our universe seems to be accelerating. The galileons possess several key properties: they possess non-trivial symmetries, and are well behaved quantum mechanically compared to other types of fields.

Here the authors investigate whether it is possible to extend the key symmetries of the galileons even further, by enlarging the set of transformations under which the theory remains invariant. It is found that while it is not possible to enlarge this symmetry while maintaining the symmetries of special relativity and not introducing new degrees of freedom, it is possible to create new kinds of Galileon-like theories it the system is non-relativistic.

Non-relativistic systems such as superfluids are well described by effective known as Goldstone bosons. Goldstone bosons are manifestations of spontaneous , where the symmetries of a system are not realized by its ground state. The new kinds of Galileon-like theories uncovered here could be useful as descriptions of systems near Multi-critical points, points in the phase diagram where multiple phases coincide.

Explore further: Theorem unifies superfluids and other weird materials

More information: International Journal of Modern Physics D, www.worldscientific.com/doi/pdfplus/10.1142/S0218271814430019

Related Stories

Theorem unifies superfluids and other weird materials

June 11, 2012

(Phys.org) -- Matter exhibits weird properties at very cold temperatures. Take superfluids, for example: discovered in 1937, they can flow without resistance forever, spookily climbing the walls of a container and dripping ...

The 500 phases of matter: Entering a new phase

December 21, 2012

(Phys.org)—Forget solid, liquid, and gas: there are in fact more than 500 phases of matter. In a major paper in today's issue of Science, Perimeter Faculty member Xiao-Gang Wen reveals a modern reclassification of all of ...

Breaking nature's superfluid symmetry

September 6, 2013

Superfluids are an exotic state of matter in which particles flow without experiencing viscosity. Hiroki Ikegami and colleagues from the RIKEN Low Temperature Physics Laboratory in Wako have now observed another remarkable ...

Magic and symmetry in mathematics

March 12, 2014

We live in a three-dimensional world. Despite the many benefits this presents, it also makes for a complicated math problem, according to Northeastern associate professor of mathematics Ivan Loseu. The best a path to a solution, ...

Platonic solids generate their 4-dimensional analogues

July 7, 2014

Alicia Boole Stott, the third daughter of mathematician George Boole, is probably best known for establishing the term "polytope" for a convex solid in four dimensions. Alicia was also a long time collaborator of HSM Coxeter, ...

Recommended for you

Using optical fiber to generate a two-micron laser

October 9, 2015

Lasers with a wavelength of two microns could move the boundaries of surgery and molecule detection. Researchers at EPFL have managed to generate such lasers using a simple and inexpensive method.

Scientists float new approach to creating computer memory

October 8, 2015

What can skyrmions do for you? These ghostly quantum rings, heretofore glimpsed only under extreme laboratory conditions, just might be the basis for a new type of computer memory that never loses its grip on the data it ...

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.