Researchers prove stability of wonder material silicene

August 12, 2014
Researchers prove stability of wonder material silicene

An international team of researchers has taken a significant step towards understanding the fundamental properties of the two-dimensional material silicene by showing that it can remain stable in the presence of oxygen.

In a study published today, 12 August, in IOP Publishing's journal 2D Materials, the researchers have shown that thick multilayers of silicene can be isolated from parent material silicon and remain intact when exposed to air for at least 24 hours.

It is the first time that such a feat has been achieved and will allow scientists to further probe the material and exploit the properties that have made silicene a promising material in the electronics industry.

Silicene is made from single honeycomb-shaped layers of silicon that are just one atom thick. At the moment, silicene must be produced in a vacuum to avoid any contact with oxygen, which could completely destroy the formation of the single layers.

Silicene must also be "grown" on a surface that matches its natural structure—silver is the leading candidate. To create silicene, a wafer of silicon is heated to high temperatures, forcing single to evaporate and land on the silver substrate, forming the single layer.

Silicene can also be transformed from a 2D material into a 3D material by stacking more and more single layers on top of each other. However, previous research has demonstrated that silicene has suicidal tendencies, and always reverts back to silicon as more layers are added, because a is more stable.

In this new study, an international team of researchers based in Italy and France fabricated multilayers of silicene using a silver substrate kept at a temperature of 470 K and a solid silicon source, which was heated to 1470 K. A total of 43 monolayers of silicene were deposited onto the substrate.

Once fabricated, the researchers observed that a very thin layer of oxidation had formed on top of the multilayered stack of monolayers; however, it was shown that this preserved the integrity of the stack, acting like a protective layer.

The stack of monolayers remained preserved for at least 24 hours in open air, in which time the researchers were able to use x-ray diffraction and Raman spectroscopy to confirm that the material was in fact silicene and not ordinary silicon.

Lead author of the study Paola De Padova, from Consiglio Nazionale delle Ricerche in Italy, said: "These results are significant as we have shown that it is possible to obtain a silicon-based 2D material, which up until a couple of years ago was deemed inconceivable.

"Our present study shows that multilayered silicene is more conductive than single-layered silicene, and therefore opens up the possibility of using it throughout the microelectronics industry. In particular, we envisage the material being used as gate in a silicene-based MOSFET, which is the most commonly used transistor in digital and analogue circuits.

"We are currently studying the possibility of growing multilayered silicene directly onto semiconductor substrates to explore the joint superconducting properties."

Explore further: Multiple groups claim to create first atom-thick silicon sheets

More information: The paper can be downloaded from iopscience.iop.org/2053-1583/1/2/021003/article

Related Stories

Researchers grow graphene on silver

November 18, 2013

(Phys.org) —Graphene, a one-atom-thick carbon layer with extraordinary conductivity and strength, holds promise for a range of applications, but to realize its potential scientists must perfect techniques to tune its properties. ...

Wonder material silicene has suicidal tendencies

January 14, 2014

The semiconductor industry of the future had high expectations of the new material silicene, which shares a lot of similarities with the 'wonder material' graphene. However, researchers of the MESA+ Research Institute of ...

Argonne scientists are first to grow graphene on silver

March 3, 2014

(Phys.org) —Silver, meet graphene. Super strong, super light, near totally transparent and one of the best conductors of electricity ever discovered, graphene is a one-atom-thick sheet of carbon atoms that owes its amazing ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.