Simpler process to grow germanium nanowires could improve lithium ion batteries

Aug 29, 2014 by Andrew Careaga
Simpler process to grow germanium nanowires could improve lithium ion batteries
Scanning electron micrograph image of germanium nanowires electrodeposited onto an indium-tin oxide electrode from an aqueous solution.

(Phys.org) —Researchers at Missouri University of Science and Technology have developed what they call "a simple, one-step method" to grow nanowires of germanium from an aqueous solution. Their process could make it more feasible to use germanium in lithium ion batteries.

The Missouri S&T researchers describe their method in "Electrodeposited Germanium Nanowires," a paper published today (Thursday, Aug. 28, 2014) on the website of the journal ACS Nano. Their one-step approach could lead to a simpler, less expensive way to grow .

As a semiconductor material, germanium is superior to silicon, says Dr. Jay A. Switzer, the Donald L. Castleman/Foundation for Chemical Research Professor of Discover at Missouri S&T. Germanium was even used in the first transistors. But it is more expensive to process for widespread use in batteries, solar cells, transistors and other applications, says Switzer, who is the lead researcher on the project.

Switzer and his team have had success growing other materials at the nanometer scale through electrodeposition – a process that Switzer likens to "growing rock candy crystals on a string." For example, in a 2009 Chemistry of Materials paper, Switzer and his team reported that they had grown zinc oxide "nanospears" – each hundreds of times smaller than the width of a human hair – on a single-crystal silicon wafer placed in a beaker filled with an alkaline solution saturated with zinc ions.

But growing germanium at the nano level is not so simple. In fact, electrodeposition in an such as that used to grow the zinc oxide nanospears "is thermodynamically not feasible," Switzer and his team explain in their ACS Nano paper, "Electrodeposited Germanium Nanowires."

So the Missouri S&T researchers took a different approach. They modified an electrodeposition process found to produce germanium nanowires using liquid metal electrodes. That process, developed by University of Michigan researchers led by Dr. Stephen Maldonado and known as the electrochemical liquid-liquid-solid process (ec-LLS), involves the use of a metallic liquid that performs two functions: It acts as an electrode to cause the electrodeposition as well as a solvent to recrystallize nanoparticles.

Switzer and his team applied the ec-LLS process by electrochemically reducing indium-tin oxide (ITO) to produce indium nanoparticles in a solution containing germanium dioxide, or Ge(IV). "The indium nanoparticle in contact with the ITO acts as the electrode for the reduction of Ge(IV) and also dissolves the reduced Ge into the particle," the Missouri S&T team reports in the ACS Nano paper. The germanium then "starts to crystallize out of the nanoparticle allowing the growth of the nanowire."

The Missouri S&T researchers tested the effect of temperature for electrodeposition by growing the germanium nanowires at room temperature and at 95 degrees Celsius (203 degrees Fahrenheit). They found no significant difference in the quality of the nanowires, although the nanowires grown at room temperature had smaller diameters. Switzer believes that the ability to produce the nanowires at through this one-step process could lead to a less expensive way to produce the material.

"The high conductivity (of germanium nanowires) makes them ideal for applications," Switzer says.

Explore further: Improving lithium-ion batteries with nanoscale research

More information: "Electrodeposited Germanium Nanowires." Naveen K. Mahenderkar, Ying-Chau Liu, Jakub A. Koza, and Jay A. Switzer. ACS Nano Article ASAP DOI: 10.1021/nn503784d Tilted

"Epitaxial ZnO Nanospears on Si(001) by Chemical Bath Deposition." Guojun Mu, Rakesh V. Gudavarthy, Elizabeth A. Kulp, and Jay A. Switzer. Chemistry of Materials 2009 21 (17), 3960-3964 DOI: 10.1021/cm9010019

add to favorites email to friend print save as pdf

Related Stories

Growing thin films of germanium

Sep 06, 2013

Researchers have developed a new technique to produce thin films of germanium crystals—key components for next-generation electronic devices such as advanced large-scale integrated circuits and flexible ...

Improving lithium-ion batteries with nanoscale research

Sep 30, 2013

New research led by an electrical engineer at the University of California, San Diego is aimed at improving lithium (Li) ion batteries through possible new electrode architectures with precise nano-scale ...

Researchers make breakthrough in battery technology

Feb 11, 2014

Researchers at the Materials and Surface Science Institute (MSSI), University of Limerick have made a significant breakthrough in the area of rechargeable battery technology. There is an ever-increasing demand ...

Nanosheets and nanowires

Apr 01, 2014

Researchers in China, have found a convenient way to selectively prepare germanium sulfide nanostructures, including nanosheets and nanowires, that are more active than their bulk counterparts and could open ...

Recommended for you

Engineers show light can play seesaw at the nanoscale

Sep 22, 2014

University of Minnesota electrical engineering researchers have developed a unique nanoscale device that for the first time demonstrates mechanical transportation of light. The discovery could have major ...

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

antialias_physorg
not rated yet Aug 29, 2014
Germanium is pretty nifty and all...but world production is somewhere around 100 tonnes per year (80% of which in China). So I guess this will unfortunately relegate any germanium technology to niche products unless we're dealing with single layer technologies.

For comparison: World silicon production is over 4 million tonnes per year.