Sequencing the genome of salamanders

August 20, 2014 by Keith Hautala

University of Kentucky biologist Randal Voss is sequencing the genome of salamanders. Though we share many of the same genes, the salamander genome is massive compared to our own, about 10 times as large.

Voss's research focuses on axolotls, with amazing regenerative ability.

"It's hard to find a body part they can't regenerate: the limbs, the tail, the , the eye, and in some species, the lens, half of their brain has been shown to regenerate," Voss said. "I'm very fortunate to have a colleague in the department, Jeramiah Smith, who's an expert at the ability to put small pieces of DNA together to kind of recreate the puzzle, which is the genome. We have funding from the National Institute of Health and the Department of Defense to sequence the axolotl genome and provide this blueprint for the first time."

With a partner at the University of Dayton, Voss is looking at the loss of regenerative ability in the eye as a salamander ages.

"Early on in life, axolotls can regenerate their lens. But at some point in time, around 28 days after they hatch, that plasticity goes away and they can't regenerate the lens," Voss said. "So, I've been working with that group trying to identify the genes that might explain that."

Voss is also starting a new collaboration with an orthopedic surgeon at UK to study knee joint regeneration.

The video will load shortly
Credit: Video by UK Research Media

"Over the course of say 10 to 15 days, the salamander will successfully regenerate a complete joint. That blows the 's mind because that would be the Holy Grail in their field to understand how to orchestrate joint regeneration in a human."

Explore further: Genetic factors shaping salamander tails determine regeneration pace

Related Stories

Recommended for you

In changing oceans, cephalopods are booming

May 23, 2016

Humans have changed the world's oceans in ways that have been devastating to many marine species. But, according to new evidence, it appears that the change has so far been good for cephalopods, the group including octopuses, ...

A 100-million-year partnership on the brink of extinction

May 24, 2016

A relationship that has lasted for 100 million years is at serious risk of ending, due to the effects of environmental and climate change. A species of spiny crayfish native to Australia and the tiny flatworms that depend ...

Rare evolutionary event detected in the lab

May 23, 2016

It took nearly a half trillion tries before researchers at The University of Texas at Austin witnessed a rare event and perhaps solved an evolutionary puzzle about how introns, non-coding sequences of DNA located within genes, ...

Is aging inevitable? Not necessarily for sea urchins

May 25, 2016

Sea urchins are remarkable organisms. They can quickly regrow damaged spines and feet. Some species also live to extraordinary old ages and—even more remarkably—do so with no signs of poor health, such as a decline in ...

Why fruit fly sperm are giant

May 25, 2016

In the animal kingdom, sperm usually are considerably smaller than eggs, which means that males can produce far more of them. Large numbers of tiny sperm can increase the probability of successful fertilization, especially ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.