Secrets of how worms wriggle uncovered

Aug 19, 2014
Earthworms. Credit: Photo courtesy of Cliff Johnston, Purdue University Department of Agronomy

An engineer at the University of Liverpool has found how worms move around, despite not having a brain to communicate with the body.

Dr Paolo Paoletti, alongside his colleague at Harvard, Professor L Mahadevan, has developed a for earthworms and which challenges the traditional view of how these soft bodied animals get around.

The most widely accepted is that of the (CPG) which states that the central brain of these creatures generates rhythmic contraction and extension waves along the body. However, this doesn't account for the fact that some of these invertebrates can move along even when their ventral nerve cord is cut.

Instead, Dr Paoletti and Professor Mahadevan hypothesised that there is a far greater role for the body's mechanical properties and the local nerves which react to the surface that the animal is travelling across.

Dr Paoletti said: "When we analyse humans running there is clearly local control over movements as by the time nerve signals travel from the foot to the brain and back again, you will have taken three steps – and would otherwise probably have fallen over."

"We see much the same in these . Rather than generating a constant wave of contraction and expansion, their movement is controlled and influenced by the contours of the surface they are moving across."

Dr Paoletti, from the School of Engineering, and Professor Mahadevan created a mathematical and computational theory to understand this and then tested these theories under different circumstances and conditions and using imagined worms of different masses. They now believe that this could be of use in robotics.

He said: "Replicating the movement of animals in robots is very difficult and often involves the use of many sensors. This new model avoids using sophisticated sensors and control strategies, and could be used to improve robots used for entering confined spaces or which have to deal with difficult terrain."

Explore further: Faster fish thanks to nMLF neurons

More information: The paper, 'A proprioceptive neuromechanical theory of crawling', was published in the journal Proceedings of the Royal Society B. rspb.royalsocietypublishing.or… 90/20141092.abstract

add to favorites email to friend print save as pdf

Related Stories

Faster fish thanks to nMLF neurons

Jul 25, 2014

As we walk along a street, we can stroll at a leisurely pace, walk quickly, or run. The various leg movements needed to do this are controlled by special neuron bundles in the spinal cord. It is not quite ...

Human arm sensors make robot smarter (w/ Video)

Jan 16, 2014

Using arm sensors that can "read" a person's muscle movements, Georgia Institute of Technology researchers have created a control system that makes robots more intelligent. The sensors send information to ...

Recommended for you

Kimberley survey nets plenty of crocs

2 hours ago

Parks and Wildlife officers have conducted a capture and release survey of freshwater crocodiles (Crocodylus johnsoni) with Bunuba Rangers at Winjanna Gorge National Park in the West Kimberley in preparation ...

Study shows sharks have personalities

16 hours ago

Some sharks are 'gregarious' and have strong social connections, whilst others are more solitary and prefer to remain inconspicuous, according to a new study which is the first to show that the notorious ...

Genetic secrets of the monarch butterfly revealed

22 hours ago

The monarch butterfly is one of the most iconic insects in the world, best known for its distinct orange and black wings and a spectacular annual mass migration across North America. However, little has been ...

User comments : 0